TY - JOUR A1 - Gluth, Gregor A1 - Zhang, W. A1 - Gaggl, M. A1 - Hillemeier, B. A1 - Behrendt, F. T1 - Multicomponent gas diffusion in hardened cement paste at temperatures up to 350 °C JF - Cement and concrete research N2 - Diffusional gas transport of a H2/CO2 mixture versus N2 in the pore system of hardened cement pastes was studied at four temperatures up to 350 °C in a Wicke-Kallenbach cell. The pastes possessed separation factors αH2,CO2 from 1.42 to 3.43, i.e. the diffusion of hydrogen took place considerably faster than the diffusion of carbon dioxide. The separation factors depended on the threshold radii of the pastes, smaller threshold radii leading to higher separation factors. The Knudsen numbers of the controlling constrictions of the pore system and the temperature dependence of the effective diffusion coefficients of the gases show that gas transport in these constrictions takes place in the transient regime between Knudsen diffusion and bulk diffusion, smaller constriction widths leading to predominating Knudsen diffusion. It is therefore possible to use cement paste membranes to separate gas components of low molecular weight from higher weight components. KW - Microstructure (B) KW - Mercury porosimetry (B) KW - Diffusion (C) KW - Cement paste (D) KW - Gas separation KW - Pore structure PY - 2012 DO - https://doi.org/10.1016/j.cemconres.2012.02.001 SN - 0008-8846 SN - 1873-3948 VL - 42 IS - 5 SP - 656 EP - 664 PB - Pergamon Press CY - New York, NY AN - OPUS4-25655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Lehmann, Christian A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten T1 - Geopolymerization of a silica residue from waste treatment of chlorosilane production JF - Materials and structures N2 - A silica residue from waste treatment of chlorosilane production was used together with solid sodium aluminate to test its applicability for the production of one-part geopolymers. The blend was activated with water and cured at 70 °C. The degree of reaction and strength were determined after 1, 3, and 7 days. The reaction products were analyzed by XRD and SEM/EDX. Until the third day of curing the degree of reaction of the residue reached 51 % and the strength was 8.9 MPa. The reaction product was identified as geopolymer containing zeolite A. Thus, the results confirmed that the residue may be used in the production of geopolymers. However, after 3 days of curing no further progress of reaction was observed and the strength slightly decreased, which was attributed to changes in the structure of the geopolymeric gel. It was further observed that even harsh vacuum drying left some water (presumably zeolitic water and surface hydroxyl groups) in the geopolymer. KW - Geopolymers KW - One-part formulation KW - Silica KW - Zeolite A PY - 2013 UR - http://link.springer.com/article/10.1617/s11527-012-9972-5/fulltext.html DO - https://doi.org/10.1617/s11527-012-9972-5 SN - 1359-5997 SN - 1871-6873 VL - 46 IS - 8 SP - 1291 EP - 1298 PB - Springer CY - Dordrecht AN - OPUS4-28596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Hillemeier, B. T1 - Pore structure and permeability of hardened calcium aluminate cement pastes of low w/c ratio JF - Materials and structures N2 - The conversion of hydrated calcium aluminate cement (CAC) leads to an increase of its porosity which results in lower strength and higher permeability. Due to particular failures in the past, caused by conversion of CAC concretes, their use is sometimes considered to be not reliable. To evaluate the durability of converted CAC, pastes of two CACs were prepared at low w/c ratios (0.25 and 0.35), heated to 105 °C for 15 days and investigated by means of helium pycnometry, mercury porosimetry and nitrogen adsorption as well as by air permeability measurements. The results were compared to the pore structure properties and permeabilities of hardened Portland cement (OPC) pastes. At identical w/c, CAC pastes and OPC pastes exhibited similar open and total porosities. The threshold radii of the CAC pastes were about one order of magnitude greater while the hydraulic radii of their open pore system were smaller. The CAC pastes possessed somewhat smaller permeabilities than the OPC pastes and can thus be regarded as being as durable as the latter in this respect. From comparison of pore structure parameters and permeabilities it was furthermore concluded that significant pore structure damage occurs in the CAC pastes during mercury porosimetry measurements and therefore the measured threshold radii have to be considered as unreliable. KW - Calcium aluminate cement KW - Permeability KW - Porosity KW - Pore structure KW - Mercury porosimetry KW - Threshold radius KW - Tonerdezement KW - Permeabilität KW - Porenstruktur KW - Quecksilberdruckporosimetrie PY - 2013 UR - http://link.springer.com/article/10.1617/s11527-012-9991-2/fulltext.html DO - https://doi.org/10.1617/s11527-012-9991-2 SN - 1359-5997 SN - 1871-6873 VL - 46 IS - 9 SP - 1497 EP - 1506 PB - Springer CY - Dordrecht AN - OPUS4-28598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Lehmann, Christian A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten T1 - Reaction products and strength development of wastepaper sludge ash and the influence of alkalis JF - Cement & concrete composites N2 - Wastepaper sludge ash (WSA) from a newsprint paper mill was investigated for its mineralogical composition and its reaction products and strength development after activation with water and sodium and potassium hydroxide solutions. The results showed the WSA to consist of calcite, free lime, gehlenite, tricalcium aluminate, belite, talc, quartz and probably a glassy phase. The principle reaction product was monocarboaluminate (CO3–AFm) for the water- as well as for the alkali-activated WSA. Formation of monocarboaluminate and strength gain was more rapid for the alkali-activated WSA until 1 day of curing. However, afterwards reactions proceeded much slower when alkali solutions were used, leading to an about twice as high compressive strength for water-activated WSA mortars after 28 days of curing. The observed behavior is tentatively ascribed to a less uniform microstructure of the alkali-activated WSA. Significant differences between NaOH- and the KOH-activated WSA were not observed. KW - Wastepaper sludge ash KW - Reaction products KW - Monocarboaluminate KW - Strength KW - Alkali-activation PY - 2014 DO - https://doi.org/10.1016/j.cemconcomp.2013.09.009 SN - 0958-9465 SN - 1873-393X VL - 45 SP - 82 EP - 88 PB - Elsevier CY - Barking, Essex AN - OPUS4-29930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, W. A1 - Gaggl, M. A1 - Gluth, Gregor A1 - Behrendt, F. T1 - Gas separation using porous cement membrane JF - Journal of environmental sciences, China N2 - Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in 'green chemistry'. As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied. KW - Gas separation KW - Porous membrane KW - Clean fuel KW - Cement membrane KW - Inorganic membranes PY - 2014 DO - https://doi.org/10.1016/S1001-0742(13)60389-7 SN - 1001-0742 SN - 1878-7320 VL - 26 IS - 1 SP - 140 EP - 146 CY - Beijing, China AN - OPUS4-30039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Koraimann, G. A1 - Ukrainczyk, N. A1 - Rudic, O. A1 - Luschnig, S. A1 - Gluth, Gregor A1 - Radtke, Martin A1 - Dietzel, M. A1 - Mittermayr, F. T1 - Cu- and Zn-doped alkali activated mortar – Properties and durability in (bio)chemically aggressive wastewater environments JF - Cement and concrete research N2 - Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosion. (Un-)exposed AAM were tested regarding their physicochemical and microstructural properties, bioreceptivity and overall durability. Metal addition led to a retarding effect during alkali-activation reaction, as well as to an increase in open porosity of up to 3.0% and corresponding lower compressive strength of up to 10.9%. Reduced microbial colonization and diversity were observed on AAM with Cu, while Zn addition led to increased biodiversity. We propose that the observed higher durability of Cu-doped AAM is due to antibacterial effects and associated reduction of biogenic acid production, superseding overall negative effects of metal-dosage on physical material properties. Observed lower durability of Zn-doped AAM was related to combined negative physicochemical and microbial effects. KW - Microbially induced corrosion KW - Alkali-activated materials KW - Biogenic acid corrosion KW - Biogene Schwefelsäurekorrosion KW - MIC PY - 2021 DO - https://doi.org/10.1016/j.cemconres.2021.106541 SN - 0008-8846 VL - 149 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-53070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Geddes, D.A. A1 - Keßler, S. A1 - Walkley, B. A1 - Gluth, Gregor T1 - The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blends JF - Frontiers in Materials N2 - Hybrid cements are composites made of Portland cement or Portland clinker and one or more supplementary cementitious materials like slag, fly ash or metakaolin, activated with an alkali salt. To date, their hydration mechanism and the phase formation at various temperatures is insufficiently understood, partly due to the large variability of the raw materials used. In the present study, three hybrid cements based on ground granulated blast furnace slag, fly ash, Portland clinker and sodium sulfate, and an alkali-activated slag/fly ash blend were cured at 10 and 21.5°C, and subsequently analyzed by XRD, 27Al MAS NMR, and TGA. The compressive strength of the hybrid cements was higher by up to 27% after 91-day curing at 10°C, compared to curing at 21.5°C. The experimental results as well as thermodynamic modeling indicate that the differences in compressive strength were related to a different phase assemblage, mainly differing amounts of strätlingite and C-N-A-S-H, and the associated differences of the volume of hydration products. While the strätlingite was amorphous to X-rays, it could be identified by 27Al MAS NMR spectroscopy, TGA and thermodynamic modeling. The microstructural properties of the hybrid cements and the alkali-activated slag/fly ash blend as well as the compatibility between thermodynamic modeling results and experimental data as a function of curing temperature and time are discussed. KW - Hybrid cements KW - Strätlingite KW - Thermodynamic modelling KW - Hydration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557767 DO - https://doi.org/10.3389/fmats.2022.982568 SN - 2296-8016 VL - 9 SP - 1 EP - 16 PB - Frontiers AN - OPUS4-55776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Bertmer, M. A1 - Gluth, Gregor T1 - Sol–gel synthesis and characterization of lithium aluminate (L–A–H) and lithium aluminosilicate (L–A–S–H) gels JF - International Journal of Applied Ceramic Technology N2 - Hydrous lithium aluminosilicate (L–A–S–H) and lithium aluminate (L–A–H) gels are candidate precursors for glass-ceramics and ceramics with potential advantages over conventional processing routes. However, their structure before calcination remained largely unknown, despite the importance of precursor structure on the properties of the resulting materials. In the present study, it is demonstrated that L–A–S–H and L–A–H gels with Li/Al ≤ 1 can be produced via an organic steric entrapment route, while higher Li/Al ratios lead to crystallization of gibbsite or nordstrandite. The composition and the structure of the gels was studied by thermogravimetric analysis, X-ray diffraction, 27Al and 29Si magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. Aluminium was found to be almost exclusively in six-fold coordination in both the L–A–H and the L–A–S–H gels. Silicon in the L–A–S–H gels was mainly in Q4 sites and to a lesser extent in Q3 sites (four-fold coordination with no Si–O–Al bonds). The results thus indicate that silica-rich and aluminium-rich domains formed in these gels. KW - Lithium aluminosilicates KW - Raman spectroscopy KW - Sol-gel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558756 DO - https://doi.org/10.1111/ijac.14187 SN - 1546-542X VL - 19 IS - 6 SP - 3179 EP - 3190 PB - Wiley AN - OPUS4-55875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Weiler, L. A1 - Bernal, S. A. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Valentini, L. A1 - Walkley, B. T1 - Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC JF - Materials and Structures N2 - The current understanding of the carbonation and the prediction of the carbonation rate of alkali-activated concretes is complicated inter alia by the wide range of binder chemistries used and testing conditions adopted. To overcome some of the limitations of individual studies and to identify general correlations between mix design parameters and carbonation resistance, the RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66% of the binder) were also included in the database. The analysis indicates that water/CaO ratio and water/binder ratio exert an influence on the carbonation resistance of alkali-activated concretes; however, these parameters are not good indicators of the carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approximating natural carbonation appears to be their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the subscript ‘eq’ indicates an equivalent amount based on molar masses. Nevertheless, this ratio can serve as approximate indicator at best, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the database points to peculiarities of accelerated tests using elevated CO2 concentrations for low-Ca alkali-activated concretes, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of the carbonation resistance under natural exposure conditions. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Accelerated testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560037 DO - https://doi.org/10.1617/s11527-022-02041-4 VL - 55 IS - 8 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-56003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Bernal, S. A. A1 - Cizer, Ö. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Shi, Z. A1 - Valentini, L. A1 - Walkley, B. ED - Escalante-Garcia, J. I. ED - Castro Borges, P. ED - Duran-Herrera, A. T1 - RILEM TC 281-CCC Working Group 6: Carbonation of alkali activated concrete—preliminary results of a literature survey and data analysis T2 - Proceedings of the 75th RILEM Annual Week 2021: Advances in Sustainable Construction Materials and Structures N2 - The current understanding of the carbonation of alkali-activated concretes is ham-pered inter alia by the wide range of binder chemistries used. To overcome some of the limitations of individual studies and to identify general correlations between their mix design parameters and carbonation resistance, the RILEM TC 281-CCC working group 6 compiled carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66 % of the binder) were also included in the database. A preliminary analysis of the database indicates that w/CaO ratio and w/b ratio exert an influence on the carbonation resistance of alkali-activated concretes but, contrary to what has been reported for concretes based on (blended) Portland cements, these are not good indicators of their carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approxi-mating natural carbonation appears to be their w/(CaO + Na2O + K2O) ratio. Furthermore, the analysis points to significant shortcomings of tests at elevated CO2 concentrations for low-Ca alkali-activated concretes, indicating that even at a concentration of 1 % CO2, the outcomes may lead to inaccurate predictions of the carbonation coefficient under natural exposure conditions. T2 - 75th RILEM Annual Week CY - Mérida, Yucatán, Mexico DA - 30.08.2021 KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Testing KW - Concrete PY - 2023 SN - 978-3-031-21734-0 SN - 978-3-031-21735-7 DO - https://doi.org/10.1007/978-3-031-21735-7_72 SN - 2211-0852 SN - 2211-0844 VL - 40 SP - 667 EP - 676 PB - Springer CY - Cham AN - OPUS4-57157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Synthesizing one-part geopolymers from rice husk ash JF - Construction and Building Materials N2 - One-part geopolymers offer advantages over conventional geopolymers with regard to handling and storage of feedstocks. However, they often suffer from a low degree of reaction, a high amount of crystalline byproducts, and consequently low strength. In this study, one-part geopolymers were produced from rice husk ash (RHA) and sodium aluminate, and investigated by XRD, ATR-FTIR, SEM and compressive strength testing. The compressive strength of the material was 30 MPa, i.e. significantly higher than for comparable one-part geopolymers. This is attributed to an almost complete reaction of the RHA and the absence of crystalline byproducts (zeolites) in the hardened geopolymer. KW - Alkali-activation KW - Geopolymers KW - One-part formulation KW - Bio-based materials KW - Rice husk ash PY - 2016 DO - https://doi.org/10.1016/j.conbuildmat.2016.08.017 SN - 0950-0618 VL - 124 SP - 961 EP - 966 PB - Elsevier Ltd. AN - OPUS4-37226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pistol, Klaus A1 - Gluth, Gregor A1 - Rickard, W. T1 - Mechanische Hochtemperatureigenschaften von flugaschebasierten Geopolymerbetonen JF - Bautechnik N2 - Als umweltschonende Alternative zu portlandzementgebundenen Betonen werden derzeit in der Betonindustrie und in der Baustoffforschung Betone mit alkaliaktivierten Bindemitteln, sog. Geopolymerbetone, intensiv erforscht. Die auf industriellen Reststoffen wie Flugasche und Hüttensand basierenden anorganischen Bindemittel weisen bei geeigneter Zusammensetzung einen hohen Widerstand gegenüber aggressiven Salzlösungen und Säuren auf. Als Grundlage für den rechnerischen Nachweis der Tragfähigkeit von brandbeanspruchten Betonbauteilen auf Basis von alkaliaktivierten Bindemitteln werden deshalb an der Bundesanstalt für Materialforschung und -prüfung (BAM) die mechanischen Hochtemperatureigenschaften von flugaschebasierten Geopolymerbetonen systematisch untersucht. Die bis zu 750 °C erhitzten Probekörper mit quarzitischer und leichter Gesteinskörnung zeigen einen Festigkeitsverlust bis ca. 300 °C, der auf entwässerungsbedingte Mikrorissbildung zurückgeführt werden kann. Bei weiter zunehmender Temperatur steigt aufgrund von Sinterungsprozessen ab ca. 500 °C die Festigkeit der untersuchten Geopolymerbetone wieder an. Diese im Vergleich zu herkömmlichem Beton günstigere Materialeigenschaft eröffnet potenziell auch Anwendungsmöglichkeiten in brandschutztechnisch kritischen Infrastrukturbereichen. Die Ergebnisse der thermomechanischen Prüfungen werden für numerische Bauteilberechnungen als temperaturabhängige Spannungs-Dehnungs-Beziehungen aufbereitet. N2 - At present, concretes based on alkali-activated binders, socalled geopolymer concretes, are investigated intensively in the building materials industry and by the research community as environmentally friendly alternative to Portland cementbased concretes. These inorganic binders, which are based on industrial by-products such as fly ash and ground granulated blast furnace slag, exhibit high resistance against corrosive acids and salts, if properly designed. The mechanical properties of fly ash-based geopolymer concretes at high temperatures are subject of systematic investigations at the Bundesanstalt für Materialforschung und -prüfung (BAM) to create a basis for the structural design of fire exposed concrete members based on alkali-activated binders. The concrete specimens, produced with quartz aggregates or lightweight aggregates and heated to a maximum temperature of 750 °C, exhibited a decrease of compressive strength up to temperatures of ca. 300 °C, attributed to formation of microcracks caused by dehydration. At higher temperatures the compressive strength of the investigated geopolymer concretes recovered partly, due to sintering processes starting from ca. 500 °C. Because of this beneficial property when compared to conventional concretes, geopolymer concretes can potentially be applied in infrastructure facilities where fire resistance is critical. From the results of the thermomechanical tests stress-strain relationships are derived that can be used for the structural design of members made from geopolymer concretes. KW - Geopolymerbeton KW - Hochtemperatureigenschaften KW - Feuerwiderstand KW - Spannung-Dehnungs-Beziehung PY - 2016 DO - https://doi.org/10.1002 / bate.201600038 SN - 1437-0999 VL - 93 IS - 8 SP - 521 EP - 530 PB - Ernst & Sohn CY - Berlin AN - OPUS4-37114 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Rickard, W.D.A. A1 - Werner, Steve A1 - Pirskawetz, Stephan T1 - Acoustic emission and microstructural changes in fly ash geopolymer concretes exposed to simulated fire JF - Materials and Structures N2 - Two fly ash-based geopolymer concretes with quartz aggregates or with expanded clay (lightweight) aggregates were exposed to the ISO 834-1 standard fire curve in a small-scale fire test set-up. Acoustic emission measurements during fire exposure and subsequent cooling were employed to study spalling events and cracking during the tests. Optical microscopy and additional acoustic measurements were conducted after the testing to better understand the crack propagation in the samples. The testing revealed that neither of the concretes were susceptible to spalling, which is particularly notable for the concrete with quartz aggregates, as it is a high-strength concrete. This behavior is attributed to the relatively high permeability of the concretes and their low amount of chemically bound water. Significant crack formation was detected only around the temperature of the alpha–beta quartz transition (573 °C) and on cooling. Because of aggregate deformations at the quartz transition temperature, deterioration after heating was more significant in the geopolymer concrete with quartz aggregates. Crack formation also occurred in the concrete with expanded clay aggregates, caused by shrinkage of the geopolymer paste on cooling. Acoustic emission measurements proved to be a valuable tool to investigate processes during high temperature exposure. KW - Geopolymers KW - Spalling KW - Concrete KW - Acoustic emission KW - Heat exposure PY - 2016 DO - https://doi.org/10.1617/s11527-016-0857-x SN - 1359-5997 SN - 1871-6873 VL - 49 IS - 12 SP - 5243 EP - 5254 PB - Springer AN - OPUS4-36907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rickard, William A1 - Gluth, Gregor A1 - Pistol, Klaus T1 - In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates JF - Cement and concrete research N2 - The mechanical and microstructural properties of geopolymer concretes were assessed before, during and after high temperature exposure in order to better understand the engineering properties of the material. Fly ash based geopolymer concretes with either quartz aggregate or expanded clay aggregate were exposed to various temperatures up to 750 °C using a thermo-mechanical testing apparatus. Microstructural investigations were also undertaken to better understand the measured changes in the mechanical properties. It was found that dehydration of capillary water caused cracking and strength losses at temperatures ≤300 °C, an effect that was more severe in the quartz aggregate geopolymer due to its lower permeability. At higher temperatures (T ≥ 500 °C) sintering promoted strength increases which enabled both concrete types to yield significant strength advantages over conventional materials. Stress–mechanical strain curves, which form the basis of the fire design of concrete structures, are reported. KW - Temperature KW - Microstructure KW - Physical properties KW - Alkali activated cement KW - Geopolymers KW - Transient thermal creep PY - 2016 DO - https://doi.org/10.1016/j.cemconres.2015.11.006 SN - 0008-8846 SN - 1873-3948 VL - 80 SP - 33 EP - 43 PB - Pergamon Press CY - New York, NY AN - OPUS4-35080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. T1 - Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods JF - Journal of materials science N2 - One-part geopolymers were synthesized from two different silica materials (a silica-rich residue from chlorosilane production and a commercial microsilica) and sodium aluminate at three different SiO2/Al2O3 ratios and a nominal water/solids ratio of 0.5. The degree of reaction of the silica in the cured geopolymers (i.e. the fraction of silica dissolved to form aluminosilicates and minor products) was determined using two different methods: chemical attack with HCl to dissolve the reaction products and evaluation of peak areas of 29Si MAS NMR spectra. It was found that the degree of reaction of the silica decreases with increasing the silica content of the starting mix, and that it is almost constant after 1 day of curing and almost independent from the kind of starting silica. From the results of the NMR-based method, the mean SiO2/Al2O3 ratio of the reaction products (aluminosilicates and minor products) can be estimated to be ca. 2.0, nearly independent of the starting composition of the geopolymers. The dissolution method is biased, but of sufficient precision to be useful for following changes of the degree of reaction. Major crystalline phases in the cured geopolymers are zeolite A and/or hydrosodalite. Depending on the starting composition, the relative amounts of these zeolites vary; additionally, sodalite (only for the residue from chlorosilane production with >1 wt% Cl-), faujasite, and zeolite EMT can appear in the geopolymers. The 29Si and 27Al MAS NMR results indicate mainly Si(4Al) and Al(4Si) sites, in line with the presence of zeolite A, hydrosodalite, sodalite, and geopolymeric gel of comparatively low SiO2/Al2O3 ratio. KW - Geopolymers KW - One-part mix KW - 29Si MAS NMR KW - 27Al MAS NMR KW - Silica KW - Degree of reaction PY - 2015 DO - https://doi.org/10.1007/s10853-015-9232-5 SN - 0022-2461 SN - 1573-4803 VL - 50 IS - 20 SP - 6768 EP - 6778 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-33826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greiser, Sebastian A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Hunger, M. A1 - Jäger, Christian T1 - Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites JF - Ceramics International N2 - Geopolymer-zeolite composites were synthesized using a silica-rich industrial byproduct from chlorosilane production and sodium aluminate. Pastes were cured at 80 °C and 80% RH, and subsequently dried in two different climates: at 23 °C and 50% RH, and under vacuum. 1H MAS, 23Na MAS and 29Si MAS NMR and XRD measurements were performed after the drying procedures as well as after subsequent aging. Zeolite Na-A was found beside traces of faujasite-type zeolite and zeolite EMT as major crystalline phases in the cured composites; the fraction of geopolymeric gel in the reaction products was determined to be ~18% on a molar basis. Various water species could be distinguished using 1H MAS and 1H-29Si CP MAS NMR, applying rotorsynchronized echo experiments. The largest fraction of the pore water resides in the α-cages of the zeolite Na-A and in the geopolymeric gel; in addition, water exists in the β-cages of the zeolites and adsorbed at sodium ions. The water species in α-cages and in the pores of the geopolymeric gel exhibit slightly different chemical shifts of 4.7 ppm and 4.9 ppm, respectively, in the 1H MAS NMR spectra. Changes of the water content in the geopolymer pores of differently dried samples were observed and led to slightly varied chemical shifts in the 29Si MAS NMR spectra too. Measurements after more than 500 days revealed no significant aging effects of the composites, which confirm their chemical stability. KW - Geopolymers KW - Aluminosilicate inorganic polymers KW - Zeolite Na-A KW - Spectroscopy KW - Drying PY - 2017 DO - https://doi.org/10.1016/j.ceramint.2016.11.004 SN - 0272-8842 VL - 43 IS - 2 SP - 2202 EP - 2208 PB - Elsevier AN - OPUS4-38694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Simon, Sebastian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - The effect of heat treatment on the mechanical and structuralproperties of one-part geopolymer-zeolite composites JF - Thermochimica Acta N2 - This contribution presents the results of structural and compressive strength investigations on cured andhigh-temperature treated silica-based one-part geopolymer-zeolite composites. The specimens weresynthesized from two different silica sources, sodium aluminate and water. The phase content as well asthe compressive strength of the cured composites varied depending on the starting mix-design and thesilica feedstock. Besides geopolymeric gel, A-type zeolites and hydrosodalites were the major reactionproducts. One of the silica feedstocks yielded significantly higher compressive strength (19 MPa), whilethe other one appears to cause less variation in phase content. Strength testing indicated an improvementon heating up to 200–400 °C (28 MPa) followed by a moderate decrease up to 700 °C. Above 700 °C the sys-tems underwent new phase formation and shrinkage (volume decrease) deformations. After exposureat 1000 °C the different mixes consisted of a mix of several stuffed silica phases, almost pure hexago-nal nepheline or amorphous phase. Depending on the mix-design, the onset temperature of the hightemperature phase transformations varied. KW - Geopolymers KW - Zeolites KW - Alkali-activation KW - High-temperature treatment KW - Thermal behavior KW - Nepheline PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0040603116300855 DO - https://doi.org/10.1016/j.tca.2016.04.015 SN - 0040-6031 VL - 635 SP - 41 EP - 58 PB - Elsevier Science CY - Amsterdam, Netherlands AN - OPUS4-35967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Peys, A. A1 - Onisei, S. A1 - Banerjee, D. A1 - Pontikes, Y. T1 - The fate of iron during the alkali-activation of synthetic (CaO-)FeOx-SiO2 slags: An Fe K-edge XANES study JF - Journal of the American Ceramic Society N2 - Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali-activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe-rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali Silicate solutions have been studied by means of X-ray absorption near-edge structure (XANES) spectroscopy at the Fe K-edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali-activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe-rich slags studied here are not Fe-analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter. KW - Alkali-activated slag KW - Inorganic polymers KW - Iron speciation KW - Nonferrous slag KW - X-ray absorption near-edge structure KW - X-ray absorption spectroscopy PY - 2018 DO - https://doi.org/10.1111/jace.15354 SN - 1551-2916 SN - 0002-7820 VL - 101 IS - 5 SP - 2107 EP - 2118 PB - John Wiley & Sons, Inc. AN - OPUS4-43880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Jäger, Christian A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten T1 - Sulfuric acid resistance of one-part alkali-activated mortars JF - Cement and Concrete Research N2 - One-part alkali-activated (geopolymer) mortars based on three different silica-rich starting materials and sodium aluminate, with and without ground granulated blast furnace slag (GGBFS) addition, were tested regarding sulfuric acid resistance according to DIN 19573:2016-03 (70 days at pH = 1). Corresponding pastes were characterized by XRD, SEM, chemical analysis, 29Si MAS NMR and 1H-29Si CPMAS NMR after water storage and after acid exposure. The mortars exhibited a high resistance against sulfuric acid attack, with the best ones conforming to the requirements of DIN 19573:2016-03. The analytical results showed that this was due to precipitation of silica gel at the acid-mortar interface, which formed a mechanically stable layer that protected the subjacent mortar and thus inhibited further degradation. The addition of GGBFS decreased the acid resistance via formation of expansive calcium sulfate phases. KW - Alkali activated materials KW - Acid resistance KW - Nuclear magnetic resonance KW - One-part geopolymers PY - 2018 DO - https://doi.org/10.1016/j.cemconres.2018.04.009 SN - 0008-8846 VL - 109 SP - 54 EP - 63 PB - Elsevier Ltd. AN - OPUS4-44722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Priebe, Nsesheye Susan A1 - Vogler, Nico A1 - Sturm, Patrick A1 - Neubert, M. A1 - Schröder, H.-J. A1 - Kühne, Hans-Carsten A1 - Hünger, K.-J. A1 - Gluth, Gregor T1 - Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars JF - Construction and Building Materials N2 - While calcined clays in general have been credited with a great potential to mitigate CO2 emissions related to cement production and consumption, calcined brick clays are currently understudied in this regard. In the present work, two brick clays, a low-grade kaolinitic clay, and a mixed clay composed of 50% brick clay and 50% low-grade kaolinitic clay were studied regarding transformations on calcination, and strength and durability performance as well as pore structure of mortars made with the blended cements. All calcined clays exhibited pozzolanic reactivity, with the performance of the brick clays inferior to the low-grade kaolinitic clay. However, the mixed clay performed very similar to the low-grade kaolinitic clay, which points to a viable option for optimal use of brick clays in cementitious systems. The carbonation resistance of the blended cement mortars was generally worse than that of the plain Portland cement mortar, as expected, but the former exhibited a significantly improved chloride penetration resistance. The latter improvement was due to pore structure refinement in the blended cement mortars, compared to the Portland cement mortar. KW - Brick clay KW - Illitic clay KW - Calcined clay KW - Blended cement KW - Supplementary cementitous materials PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.120990 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 266 SP - 120990 PB - Elsevier Ltd. AN - OPUS4-51362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -