TY - JOUR A1 - Vollert, F. A1 - Thomas, Maximilian A1 - Kromm, Arne A1 - Gibmeier, J. T1 - Hot crack assessment of LTT welds using μCT N2 - Investigations on weldability often deal with hot cracking, as one of the most popular failure during weld fabrication. The modified varestraint transvarestraint hot cracking test (MVT) is well known for the assessment of the hot cracking susceptibility of materials. The shortcoming of this approach is that the information is only from the very near surface region, which inhibits access to the characteristic of the hot crack network in the bulk. Here, we report about a new approach, illustrated in the example of low transformation temperature (LTT) weld filler materials, to monitor the entire 3D hot crack network after welding by means of microfocus X-ray computer tomography (μCT). T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Varestraint testing KW - LTT weld filler materials KW - Hot cracking KW - Welding KW - μCT-analysis PY - 2020 UR - http://www.ndt.net/?id=25121 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-50341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Vollert, F. A1 - Kromm, Arne A1 - Gibmeier, J. A1 - Hannemann, Andreas A1 - Fischer, Tobias A1 - Kannengießer, Thomas T1 - In situ analysis of the strain evolution during welding using low transformation temperature filler materials N2 - Compared to conventional welding consumables using low transformation temperature (LTT) filler materials is an innovative method to mitigate tensile residual stresses due to delayed martensite transformation of the weld. For the effective usage of LTT filler materials, a deeper understanding of the complex processes that lead to the final residual stress state during multipass welding is necessary. Transformation kinetics and the strain evolution of multi-pass welds during welding were investigated in situ at the beamline HEMS@PETRAIII, Germany. Compared to conventional welds, the total strain was reduced and compression strain was achieved when using LTT filler materials. For an optimal use of the LTT effect in the root of multi-pass welds, the alloying concept must be adapted taking care of dilution. KW - Low transformation temperature filler materials KW - Synchrotron diffraction KW - Phase transformation KW - Multi-pass welding KW - ADXRD PY - 2018 U6 - https://doi.org/10.1080/13621718.2018.1525150 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 3 SP - 243 EP - 255 PB - Taylor & Francis AN - OPUS4-46039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Wimpory, Robert A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Schröpfer, Dirk T1 - Residual stresses of LTT welds in large-scale components N2 - Residual stresses of welds become more and more important influencing cold cracking as well as the fatigue life of welded components. Low transformation temperature (LTT) filler materials offer the opportunity to alter the residual stresses already during the welding process by means of ad- justed martensite phase transformation temperature (MS). In the current paper, welding residual stresses are studied putting the focus on MS while joining heavy steel sections with a thickness of 20 and 25 mm, respectively. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results com- pare the residual stresses present in a conventional weld and LTT welds when multi-pass welding of large-scale compo- nents was applied. Repeated phase transformation in the case of the LTT weld is more vital for the residual stresses present in the real-life-like joints. This accounts for the top surface in longitudinal direction but is most pronounced for the bulk of the welds. Detrimental tensile residual stresses are mainly re- duced in the bulk in comparison to a conventional filler wire even in multi-pass welds of thick steel sections. T2 - IIW AA 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2017 U6 - https://doi.org/10.1007/s40194-017-0502-5 SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 6 SP - 1089 EP - 1097 PB - Springer CY - Heidelberg AN - OPUS4-41169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollert, F. A1 - Gibmeier, J. A1 - Rebelo-Kornmeier, J. A1 - Dixneit, Jonny A1 - Pirling, T. ED - Neu, R. W. ED - Totten, G. E. T1 - Two-dimensional residual stress mapping of multilayer LTT weld joints using the contour method N2 - Low transformation temperature (LTT) weld filler materials offer an attractive alternative to cost intensive postweld treatments as they can mitigate detrimental welding residual stresses during the welding process. Compared to conventional weld filler materials, LTT alloys are characterized by a delayed martensite transformation at low temperatures, which can result in compressive residual stresses in the weld. The high strength of these filler materials makes them potentially applicable to high-strength steels as well as for a large amount of requested repair works in steel structures. The focus of the study is on the confirmation of the LTT idea with regard to the residual stress state for multipass weld lines processed by metal active gas welding. It is demonstrated that the contour method is a well-suited technique for measuring the residual stress in the weld joint as it gives an entire two-dimensional map of the residual stress state in the weld line, heat affected zone (HAZ), and base material. The technique was applied at different LTT alloys with varying chemical compositions. Additionally, the results are compared to residual stress maps that were determined by Neutron diffraction using the Strain Analyzer for Large Scale Engineering Applications, an instrument referred to as SALSA, at the Institut Laue-Langevin in Grenoble. For all investigated specimens, compressive residual stress distributions were determined in the area of the weld joint and the HAZ. They are balanced by tensile residual stresses in the surrounding base material. However, it is shown that the size of theregion exhibiting compressive residual stresses and the absolute values of the compressive residual stresses depend on the chemical composition of the weld filler material. KW - LTT Weld Filler Materials KW - contour method KW - neutron diffraction KW - Welding KW - residual stress analysis PY - 2018 U6 - https://doi.org/10.1520/MPC20170110 SN - 2379-1365 VL - 7 IS - 4 SP - 545 EP - 558 PB - ASTM International CY - West Conshohocken, PA, USA AN - OPUS4-46694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -