TY - CONF A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Iron uptake by the rock-inhabiting fungus Knufia petricola N2 - Iron is arguably the most essential metal in living organisms. For rock-inhabiting fungi its acquisition might be unconventional as they (1) tend to inhabit iron-deficient, oxygen-rich surfaces like marble monuments and solar panels and (2) produce the black, iron-adsorbing pigment melanin. We used a range of analytical methods, ongoing mineral dissolution experiments and gene deletion mutants of the model rock-inhabiting fungus Knufia petricola to figure out the mechanisms and substrate deteriorating effects of iron uptake by these organisms. To study both siderophore-mediated and reductive iron assimilation (RIA), genes like sidC, encoding a putative siderophore synthetase and ftr1 and fet3 encoding the subunits of an iron permease-oxidase were deleted. At iron deficient conditions, growth of the wild type (WT) and ΔsidC mutant was similar, whereas growth of the Δftr1-fet3 mutant and the double mutant ΔsidC/Δftr1-fet3 was diminished and absent, respectively. We were not able to detect the siderophore of K. petricola and the WT and mutants were not able to grow at low concentrations of strong iron chelators. However, in a cross-feeding experiment, an overexpression strain of sidC allowed more growth of ΔsidC/Δftr1-fet3 on iron deficient medium than the WT, whereas the ΔsidC mutant could not do so at all. Compared to the WT, the sidC overexpression strain also withstood oxidative stress better and had a shorter lag time and higher growth rate. Combined, these results indicate that K. petricola relies more on RIA than siderophore-mediated uptake as it likely excretes low quantities of a primarily intracellular siderophore. Interestingly, Δftr1-fet3 had a higher iron content than the WT at iron deficient conditions. This difference disappeared upon deletion of melanin synthesis (Δpks1 vs. Δpks1/Δftr1-fet3): melanin-bound iron can likely not be used without RIA. K. petricola’s chelation incapacity implies a habitat free of competition for iron while offering us a mitigation strategy. T2 - ECFG16 CY - Innsbruck, Austria DA - 05.03.2023 KW - Siderophore KW - Melanin KW - Reductive iron assimilation PY - 2023 AN - OPUS4-57148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Feldmann, Ines A1 - Schüssler, J.A. A1 - Toepel, Jörg A1 - von Blanckenburg, F. A1 - Gorbushina, Anna T1 - Olivine dissolution by a model consortium: biological impact and analytical methodology considerations N2 - Microbiological biofilms on rocks are ubiquitous in nature and their influence on soil formation through rock weathering has been shown (Gorbushina 2007). However, most previous studies on rock weathering are limited to understanding the physical and chemical aspects overlooking the impact of biota. Due to the enormous amounts of variables that come with a biological process, the quantification of its influence is only possible by using well-controlled and simplified laboratory models. Thereby gaining more insight on the impact of rock inhabiting biofilms on mineral weathering. This presentation will show the impact of biotic weathering in terms of olivine dissolution rates Natural forsterite was incubated in batch reactor flasks with and without a model consortium consisting of the phototrophic cyanobacterium Nostoc punctiforme and the rock-inhabiting ascomycete Knufia petricola, and submerged in a growth solution (pH 6). The flasks were incubated for 30 days under 25°C, 90 µmol photons/m2s and were shaken at 150 rpm. qPCR was performed to quantify the cell number of both organisms, BET to gather the specific surface of the used olivine and ICP-OES to follow up the change of concentration of the leached out metals. Our results show that our model consortium, especially K. petricola does increase the dissolution rate of olivine. The pH increased from the initial 6 to around 7.2 for all setups. Initially Mg was preferentially released over Si (Mg/Si of 3.5), until after two days the ratio starts equilibrating around stoichiometric dissolution. During this timeframe the dissolution rate drops by nearly two orders of magnitude, just as observed by Daval et al., (2011). The difference in dissolution rates between the different setups is initially non-existent, but increases over time. After 30 days the setup with K. petricola gives a dissolution rate of 1.08 10-13 moles/cm2s, compared to 9.23 10-14 moles/cm2s for the abiotic setup. We expect this study to cause awareness on the impact of microbiology on mineral weathering. Additionally it is a starting point for other, more complicated experiments using for instance flow through or drip flow reactors or other minerals. T2 - VAAM CY - Jena, Germany DA - 13.03.2016 KW - Olivine KW - Weathering KW - Biofilm PY - 2016 AN - OPUS4-37971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -