TY - CONF A1 - Gerrits, Ruben A1 - Hennehan, M.J. A1 - Frick, D.A. A1 - von Blanckenburg, F. A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - The role of melanin in fungal mineral weathering and metal corrosion N2 - Melanins are organic pigments produced by most fungi. These organisms either fix these pigments in their cell wall or secrete them into their extracellular environment to protect themselves against an array of physicochemical stresses (e.g., UV irradiation, desiccation, ...). Melanin can adsorb metals like Fe. How this affects fungal uptake of Fe and deterioration of Fe-containing minerals and metals is however less known. To study this, we use the model fungi Knufia petricola A95, a rock-inhabiting fungus known to deteriorate minerals and have melanised cell walls, and Amorphotheca resinae, able to contaminate fuel tanks, secrete melanin and corrode metals. In K. petricola, we have deleted genes involved in melanin production and Fe uptake using CRISPR/Cas. Through comparison of the geochemical signatures of these gene deletion mutants with those of the wild type (WT), we explore the specific mineral/metal deterioration mechanisms of melanised fungi. Fe isotope signatures of the biomass of melanin- and Fe uptake-deficient mutants of K. petricola revealed that Fe adsorbed either directly onto melanin or after being reduced by Fe reductases. Importantly, once adsorbed to melanin, Fe could not be mobilised and taken up into the cell: both the WT and its melanin-deficient mutant, previously grown at Fe replete conditions, showed similar growth at Fe deficient conditions. Olivine dissolution experiments revealed that Fe oxidation inhibits dissolution. K. petricola was able to enhance dissolution when this inhibition is strongest (at pH 6) and prevented dissolution when this inhibition is weakest (at pH 4). The fungus therefore dissolves olivine by interacting with the oxidised Fe at the olivine surface. However, Fe uptake did not seem to be involved: mutants deficient in various Fe uptake mechanism dissolved olivine at the same rate as the WT. This indicates that Fe adsorption onto melanin might play a key role. This is also shown by K. petricola’s ability to enhance olivine dissolution even further if secreting a melanin precursor and A. resinae’s corrosion of carbon steel whilst secreting melanin. Combined, our results imply that the Fe adsorbed to melanin cannot be taken up but enables fungi to deteriorate Fe-containing substrates at a higher rate. T2 - Goldschmidt 2023 Conference CY - Lyon, Frankreich DA - 10.07.2023 KW - MIC KW - Bio-weathering KW - Olivine PY - 2023 AN - OPUS4-58523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben T1 - Fungal biofilms are supported by EPS and protective pigments in their substrate attachment and desiccation tolerance N2 - Rock-inhabiting fungi are known to colonise air-exposed substrates like minerals, photovoltaic panels building facades and monuments, withstanding the various stresses these extreme habitats are known for. Here we show how both colonisation and stress resistance are linked to the properties of the fungal cell surface. By deleting genes involved in the synthesis of melanin and carotenoid pigments of the model rock-inhabiting fungus Knufia petricola via CRISPR-Cas and comparing the behaviour of the gene-deletion mutants with the wild type (WT), we studied the role of these genes in mineral colonisation and stress sensitivity. The extracellular polymeric substances (EPS) of biofilms of the WT and mutants were extracted, quantified and chemically characterised. We observed that the absence of melanin affected the quantity and composition of the produced EPS: melanin-deficient mutants synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, in mineral dissolution experiments, these mutants showed a lower ability to colonise the mineral olivine. We hypothesise that not melanin, but the pullulan-related linkages enabled the melanin-producing strains to attach more strongly to the mineral. Moreover, ICP-OES analysis of the aqueous mineral-derived solutes showed that biofilms of the K. petricola mutants which could attach were able to dissolve the olivine faster than those that could not. The same mutants were also characterised by their sensitivity to desiccation stress: only the mutant deficient in both melanin and carotenoid synthesis was more sensitive to desiccation compared to the WT, indicating that a combination of both pigments is critical to withstand desiccation. Overall, these results show the critical role of the cell surface in the specific capacities of rock-inhabiting fungi. T2 - Biofilms 10 CY - Leipzig, Germany DA - 09.05.2022 KW - Bio-weathering KW - Desiccation KW - Fungal biofilms PY - 2022 AN - OPUS4-56675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Gerrits, Ruben T1 - An experimental study of fungal olivine weathering N2 - Free-living and (ecto)-mycorrhizal fungi enhance rock weathering. In their roles as mineral weathering agents and mutualistic partners of phototrophs, fungi supply primary producers like plants and phototrophic microorganisms with mineral-derived nutrients. The exact mechanisms behind fungus-induced mineral weathering processes are however not well understood. Progress can be achieved here by reproducible experimental simulations of the natural processes, using well-characterised model organisms and minerals. In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes. Three experimental systems, which generate long-term microbiological stability, were developed to study the impact of the WT and ΔKppks on olivine weathering: (1) batch and (2) mixed flow dissolution experiments, and (3) biofilm cultivation experiments. In addition, state-of-the-art analytical techniques were used to monitor changes in the growth medium, as well as of the mineral surface and biofilm-mineral interface. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of the Mg, Si and Fe concentrations in the reacted growth medium was used to quantify olivine dissolution. In abiotic controls, Mg and Si dissolved congruently, while Fe precipitated. The measured olivine dissolution rates at pH 6 were two orders of magnitude lower than previously reported, but similar at acidic pH. X-ray photoelectron spectroscopy (XPS) analyses of the olivine surface confirmed the presence of Fe (oxyhydr)oxide precipitates. Transmission electron microscopy (TEM) imaging of an abiotically reacted polished olivine section from the long-term cultivation experiment showed the presence of an amorphous layer enriched in Fe. All these observations indicate that the precipitation of Fe (oxyhydr)oxides on the olivine surface inhibits olivine dissolution. Both tested rock-inhabiting fungal strains affect Fe precipitation as well as olivine dissolution. Evaluation of the WT and ΔKppks revealed that the WT formed less biomass but could take up higher amounts of metals (e.g. Fe) and was more efficient in its attachment to olivine. The WT and ΔKppks enhanced olivine dissolution as demonstrated by higher Mg and Si concentration in the reacted growth medium. They furthermore prevented Fe precipitation by binding Fe and retaining it in solution, thereby allowing olivine dissolution to proceed. The WT cells that were attached to the olivine surface were particularly efficient at inhibiting Fe precipitation. By binding Fe directly at the olivine surface, the WT cells removed the inhibition of olivine dissolution almost completely. TEM analysis of polished olivine sections, colonised by a fungal biofilm for seven months, supported this hypothesis. After long-term fungus-olivine interaction, the Fe-enriched, amorphous layer did not develop, and the olivine surface was stronger etched compared to the abiotic control. To study the effect of mutualism on mineral weathering, K. petricola was grown with the cyanobacterium, Nostoc punctiforme ATCC 29133. Both partners showed an enhanced growth and formed a stratified biofilm which attached more strongly to olivine. Nevertheless, the olivine dissolution rate of the fungus-cyanobacterium consortium was moderate. Rock weathering simulation systems developed here are promising research instruments. The experimental conditions allow for the alteration of the studied mineral surface, while the clear definition of these conditions delivers a stable growth of microorganisms. The latter makes these systems universally applicable, especially in combination with integrative multidisciplinary analytics. Processes underlying environmental and biological effects on rock weathering, metal corrosion, plastic degradation, or the deterioration of any other substrate can be studied reproducibly and over a long period of time. The chemical and biological complexity of these simulation systems mimics natural rock weathering processes. The mineral dissolution rates generated in this study are therefore relevant to natural ecosystems. KW - Olivine KW - Weathering KW - Fungus PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-25125-1 DO - https://doi.org/10.17169/refubium-2880 SP - 1 EP - 178 PB - Freie Universität Berlin CY - Berlin AN - OPUS4-48825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gerrits, Ruben T1 - Data of "An experimental study of fungal olivine weathering" N2 - This file contains all the data used for the figures shown in the Dissertation of Ruben Gerrits with the title "An experimental study of fungal olivine weathering". In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes. KW - Olivine KW - Weathering KW - Fungus PY - 2019 DO - https://doi.org/10.26272/opus4-48770 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Catanzaro, Ilaria A1 - Gerrits, Ruben A1 - Feldmann, Ines A1 - Gorbushina, Anna A. A1 - Onofri, Silvano A1 - Schumacher, Julia T1 - Deletion of the polyketide synthase‐encoding gene pks1 prevents melanization in the extremophilic fungus Cryomyces antarcticus N2 - Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which—according to a previous investigation—may contain both 1,8‐dihydroxynaphthalene (DHN) and L‐3,4 dihydroxyphenylalanine (L‐DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non‐reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock‐inhabiting fungus Knufia petricola. The co‐expression of CaPKS1 or KpPKS1 with a 4′‐phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non‐melanized mutants were generated by CRISPR/Cas9‐mediated genome editing. Notwithstanding its slow growth (up to months), three independent non‐melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild‐type and non‐melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B‐GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non‐melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space. KW - Astrobiology KW - Black fungi KW - CRISPR/Cas9 KW - DHN melanin KW - Cryptoendolithism PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606599 DO - https://doi.org/10.1002/iub.2895 SN - 1521-6551 SP - 1 EP - 19 PB - Wiley AN - OPUS4-60659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - Data for "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" N2 - Data for the publication "The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering" (https://doi.org/10.1038/s41529-022-00253-1). It includes: - The Summary of the EPS concentration, EPS sugar components and EPS linkages. - The Summary of the XPS analysis of freeze-dried biofilm samples of all strains. - The Summary of the pH, Mg, SI and Fe concentration, biomass and olivine dissolution rate for each time point of all dissolution experiments. KW - Biofilms PY - 2022 DO - https://doi.org/10.26272/opus4-54901 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-54901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549025 DO - https://doi.org/10.1038/s41529-022-00253-1 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -