TY - JOUR A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Polystyrene Microparticles with Convergently Grown Mesoporous Silica Shells as a Promising Tool for Multiplexed Bioanalytical Assays N2 - Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run. KW - Bead-based assay KW - Core-shell particles KW - Human papillomavirus KW - Mesoporous silica KW - Multiplexing PY - 2020 DO - https://doi.org/10.1021/acsami.0c17940 SN - 1944-8244 VL - 13 IS - 1 SP - 207 EP - 218 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471267 DO - https://doi.org/10.1002/open.201800231 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kyrey, T. A1 - Ganeva, M. A1 - Gawlitza, Kornelia A1 - Witte, J. A1 - von Klitzing, R. A1 - Soltwedel, O. A1 - Di, Z. A1 - Wellert, S. A1 - Holderer, O. T1 - Grazing incidence SANS and reflectometry combined with simulation of adsorbed microgel particles N2 - Adsorbed ethylene glycol based microgel particles on a Silicon surface were studied. Neutron reflectometry (NR) and grazing incidence small-angle neutron scattering (GISANS) were performed to investigate their internal structure. Scattering experiments on soft matter systems such as adsorbed microgels often give only partial Information about the inner structure of the polymer system. In this contribution, we discuss how the detailed inner structure of adsorbed microgel particles can be reconstructed by a combination of the specular Neutron Reflectivity (NR), Grazing Incidence Small Angle Neutron Scattering (GISANS), Atomic Force Microscopy (AFM) and a simulation in the framework of the Distorted Wave Born Approximation. KW - Grazing incidence small-angle neutron scattering KW - Neutron reflectometry KW - BornAgain simulation KW - Adsorbed microgel particles PY - 2018 DO - https://doi.org/10.1016/j.physb.2018.03.049 SN - 0921-4526 VL - 551 SP - 172 EP - 178 PB - Elsevier B.V. AN - OPUS4-47011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -