TY - JOUR A1 - Jiang, Shan A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell N2 - Dual-fluorescent molecularly imprinted nanoparticles with a red-emissive carbon nanodot-doped silica core and a chlorogenic acid-imprinted fluorescent polymer layer are prepared and their use in ratiometric fluorometric analysis is described. Nanoparticle probes consisting of a shielded and stably emitting core and a shell with embedded binding sites that indicates the presence of an analyte with a change in emission allow for internally referenced measurements potentially accounting for detrimental influences from instrument drifts, light source fluctuations or sensor materials-related inhomogeneities. KW - Molecular imprinting KW - Fluorescence KW - Core-shell particles KW - Chlorogenic acid KW - Ratiometric measurement PY - 2021 U6 - https://doi.org/10.1007/978-1-0716-1629-1_17 VL - 2359 SP - 195 EP - 208 PB - Springer CY - Humana, New York, NY AN - OPUS4-53336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Beyer, S. A1 - El-Schich, Z. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Gjörloff-Wingren, A. T1 - Imprinted Particles for Direct Fluorescence Detection of Sialic Acid in Polar Media and on Cancer Cells with Enhanced Control of Nonspecific Binding N2 - Glycoproteins are abundant on the cell surface of mammals, providing structural support, modulating cell Membrane properties, and acting as signaling agents. Variation of glycosylation patterns has been found to indicate various disease states, including cell malignancy. Sialic acid (SA) is present as a terminating group on cell-surface glycans, and its overexpression has been linked to several types of cancer. Detection of SA on the cell surface is therefore critical for detection of cancer in its early stages. In this work, a fluorescent molecularly imprinted polymer layer targeting SA was synthesized on the surface of silica-coated polystyrene (PS) particles. Compared to previous works, a PS core supplies a lighter, lower-density support for improved suspension stability and scattering properties. Moreover, their smaller size provides a higher surface-area-to-volume ratio for binding. The incorporation of a fluorescent monomer in the MIP shell allowed for simple and rapid determination of binding specificity in polar media due to a deprotonation−reprotonation interaction mechanism between the fluorescent monomer and SA, which led to spectral changes. Upon titration of the MIP particles with SA in suspension, an increase in fluorescence emission of the particles was observed, with the MIP particles binding SA more selectively compared to the nonimprinted polymer (NIP) control particles. In cell staining experiments performed by flow cytometry, the binding behavior of the MIP particles compared favorably with that of SA-binding lectins. NIPs prepared with a “dummy” template served as a better negative control in cell binding assays due to the favorable inward orientation of template-binding functional groups in the polymer shell, which reduced nonspecific binding. The results show that fluorescent MIPs targeting SA are a promising tool for in vitro fluorescence staining of cancerous cells and for future diagnosis of cancer at early stages. KW - Flow cytometry KW - Sialic acid KW - Fluorescence KW - Molecularly imprinted polymers KW - Cancer cells PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525216 VL - 3 IS - 5 SP - 2363 EP - 2373 PB - American Chemical Society AN - OPUS4-52521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -