TY - CONF A1 - Gawlitza, Kornelia A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Witthuhn, Heike A1 - Rurack, Knut T1 - Mesoporous silica materials incorporating BODIPY dyes as a versatile system for the trace detection of hazardous chemical species N2 - There is significant contamination of our water resources and an accelerating accumulation of hazardous species in the aquatic biosphere. Whether for instance mercury as a contaminant constantly released from a multitude of industrial processes or chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB) or Soman (GD) as highly toxic remnants of World War II, released from dumped containers upon their progressive corrosion, are concerned such hazards can cause serious problems to human health even at low concentration and monitoring them becomes increasingly essential. Conclusively, it is necessary to develop sensors for such hazards that combine high sensitivity, good selectivity, fast responses and can dispense with complex instrumentation. Here, we present SBA-15-type mesoporous silica materials containing boron–dipyrromethene (BODIPY) probes in their pore systems that allow for the sensitive and selective detection of the two target analytes CWAs and Hg2+ in natural waters via a change in the optical properties. In case of Hg2+, the BODIPY dye is directly adsorbed on the (inner and outer) surface of the highly porous material and coordinates the metal ion, leading to an enhancement of fluorescence with a limit of detection (LOD) of 15 ppt. Using the same silica material but incorporating a covalently attached BODIPY dye, the CWAs GA, GD and GB can be detected via fluorescence quenching induced by an intraannular cyclization. The obtained LOD in natural waters is in the pM range and hence below the Maximum Permissible Concentrations for CWAs in drinking water. Aspects of system design as well as application in water and food analysis (fish extracts) will be presented. T2 - Rapid Methods Europe (RME) 2016 CY - Amsterdam, The Netherlands DA - 07.11.2016 KW - Mesoporous silica materials KW - Sensor materials KW - Fluorescence sensors PY - 2016 AN - OPUS4-38182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Bartelmeß, Jürgen T1 - KonSens - Kommunizierende Sensorsysteme für die Bauteil- und Umweltüberwachung N2 - In the KonSens Project, sensor systems are developed, validated, and operated in form of functional models for the application areas Structure Integrated Sensors and Mobile Multi-gas Sensors. Key aspects are the detection and evaluation of corrosion processes in reinforced concrete structures as well as the detection and quantification of very low concentrations of toxic gases in air. The adaption of sensor principles from the lab into real-life application including appropriate communication techniques is a major task. In recent years, Structural Health Monitoring have gained in importance, since growing age of buildings and infrastructure as well as increasing load requirements demand for reliable surveillance methods. In this regard, the project follows two strategies: First, the development and implementation of completely embedded sensor systems consisting of RFID-tag and in situ sensors, and their further application potential (e.g. for precast concrete elements, roadways, wind power plants, and maritime structures). Secondly, the development of a long-term stable, miniaturized, fiber optic sensor for a ratiometric and referenced measurement of the pH-value in concrete based on fluorescence detection as an indicator for carbonation and corrosion. Environmental pollution through emission of toxic gases becomes an increasing problem not only in agriculture (e.g. biogas plants) and industry but also in urban areas. This leads to increasing demand to monitor environmental emissions as well as ambient air and industrial air components in many scenarios and in even lower concentrations than nowadays. The selectivity of luminescence-based sensors is enabled by the combination of the sensing dye and the material, which is used as accumulation medium for concentration of the analyte. This principle allows for developing gas sensors with high selectivity and sensitivity of defined substances. Additional benefits, particularly of fluorescence-based sensors, are their capability for miniaturization and potential multiplex mode. Objective is the development and implementation of sensors based on fluorescence detection for defined toxic gases (ammonia, hydrogen sulfide, ozone, and benzene) with sensitivity in the low ppm or even ppb range. Additionally, the integration of such sensors in mobile sensor devices is addressed. T2 - Colloquium of Optical Spectrometry (COSP) 2017 CY - Berlin, Germany DA - 27.11.2017 KW - RFID sensors KW - Sensors in concrete KW - Gas sensors KW - Mobile sensors KW - Fluorescence sensors PY - 2017 AN - OPUS4-43183 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -