TY - RPRT A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. T1 - Digital Holographic Cytometry: Macrophage Uptake of Nanoprobes N2 - Digital holographic cytometry (DHC) is a state-of-the-art quantitative Phase imaging (QPI) method that permits time-lapse imaging of cells without induced cellular toxicity. DHC platforms equipped with semi-automated image segmentation and analysis software packages for assessing cell behavior are commercially available. In this study we investigate the possible uptake of nanoprobes in macrophages in vitro over time. KW - Macrophages KW - MIPs KW - Holographic microscopy KW - Sialic acid PY - 2019 VL - 21 SP - 21 EP - 23 PB - Wiley CY - Imaging and Microscopy AN - OPUS4-47793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a microfluidic platform for nanomolar small-molecule detection in water N2 - Besides the traditional areas of application such as separation and enrichment which made molecularly imprinted polymers (MIPs) very attractive, they have emerged as a valuable detection tool in the field of environmental analysis due to the low production costs, high stability, format adaptability and the possibility to imprint and thus specifically recognize a wide variety of target analytes. Regarding optical sensing, however, MIPs have only been used in considerably few applications, especially in fluorescence sensors, basically because of the challenge to incorporate a fluorescently responding moiety into a polymer matrix. One way to overcome this limitation is the coating of a thin MIP layer onto the surface of silica nanoparticles using tailor-made fluorescent indicator monomers or cross-linkers for direct transfer of the binding event into an optical signal. Regarding sensors for environmental monitoring, microfluidic devices utilizing optical detection modules are especially appealing because of their versatility in terms of miniaturization and automation. So far, MIPs have only rarely been used in combination with microfluidic sensor devices. Here, we present the hydrogen bond-mediated optical response of fluorescent MIP sensor particles against a typical small-molecule analyte 2,4-D (2,4-dichlorophen¬oxyacetic acid) which is an important herbicide widely used in agriculture and known to cause adverse health effects when ingested by contaminated water. By combining the sensor particles with droplet-based 3D microfluidics, a microfluidic phase-transfer assay was designed which enables the direct analysis of 2,4-D in river and lake water without sample pre-treatment or clean-up. T2 - Bioinspired Materials conference 2017 CY - Manchester, UK DA - 31.08.2017 KW - MIPs KW - Fluorescence KW - Sensor KW - Water-monitoring PY - 2017 AN - OPUS4-41828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -