TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Kimani, Martha A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for direct detection of glyphosate in organic solvents and water N2 - Glyphosate (GPS) is the most widely used pesticide in the world whose use increased dramatically after the introduction of genetically modified crops engineered to resist its herbicidal action during application. In recent years, there have been growing concerns over its toxicity following its classification by the International Agency for Research on Cancer (IARC) as a probable carcinogen as well as reports of its ecotoxicological effects. This resulted in increased efforts to develop quick and sensitive detection methods. In this work, molecular imprinting was combined with direct fluorescence detection of GPS by improving its solubility in organic solvents using tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) as counterions. To achieve fluorescence detection, a fluorescent crosslinker containing urea binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+, enabling the direct fluorescence detection and quantification of GPS in water in a biphasic assay. A limit of detection of 1.45 µM and a linear range of 5–55 µM, which matches well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 µM), have been obtained. The assay can be further optimized to allow miniaturization into microfluidic devices and shows potential for on-field applications by untrained personnel. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Greece DA - 04.09.2022 KW - Glyphosate KW - Molecular Imprinting KW - Core-Shell Particles KW - Fluorescent Urea Receptors PY - 2022 AN - OPUS4-56311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Long-Term Monitoring of Gaseous Ammonia with a Semi-automated Measuring Device N2 - In the present paper the development of a semi-automated device for long-term monitoring of gaseous ammonia is described. A sensor material was produced that changes its optical properties in the pres-ence of low concentrations of ammonia in air. The implementation into an electronic device enables precise, simple, economic and fast monitoring of low concentrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Spectroscopy KW - Embedded sensor KW - Environment KW - Air quality PY - 2021 AN - OPUS4-52575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Witthuhn, Heike A1 - Rurack, Knut T1 - Mesoporous silica materials incorporating BODIPY dyes as a versatile system for the trace detection of hazardous chemical species N2 - There is significant contamination of our water resources and an accelerating accumulation of hazardous species in the aquatic biosphere. Whether for instance mercury as a contaminant constantly released from a multitude of industrial processes or chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB) or Soman (GD) as highly toxic remnants of World War II, released from dumped containers upon their progressive corrosion, are concerned such hazards can cause serious problems to human health even at low concentration and monitoring them becomes increasingly essential. Conclusively, it is necessary to develop sensors for such hazards that combine high sensitivity, good selectivity, fast responses and can dispense with complex instrumentation. Here, we present SBA-15-type mesoporous silica materials containing boron–dipyrromethene (BODIPY) probes in their pore systems that allow for the sensitive and selective detection of the two target analytes CWAs and Hg2+ in natural waters via a change in the optical properties. In case of Hg2+, the BODIPY dye is directly adsorbed on the (inner and outer) surface of the highly porous material and coordinates the metal ion, leading to an enhancement of fluorescence with a limit of detection (LOD) of 15 ppt. Using the same silica material but incorporating a covalently attached BODIPY dye, the CWAs GA, GD and GB can be detected via fluorescence quenching induced by an intraannular cyclization. The obtained LOD in natural waters is in the pM range and hence below the Maximum Permissible Concentrations for CWAs in drinking water. Aspects of system design as well as application in water and food analysis (fish extracts) will be presented. T2 - Rapid Methods Europe (RME) 2016 CY - Amsterdam, The Netherlands DA - 07.11.2016 KW - Mesoporous silica materials KW - Sensor materials KW - Fluorescence materials PY - 2016 AN - OPUS4-38183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -