TY - CONF A1 - Tiebe, Carlo A1 - Gawlitza, Kornelia A1 - Banach, Ulrich A1 - Noske, Reinhard A1 - Rurack, Knut A1 - Bartholmai, Matthias T1 - Gas standards for the calibration of novel fluorescence sensors for ammonia N2 - Ammonia and its conversion product ammonium have a strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the molar fraction range (0.5 to 500) nmol/mol. There is a need for reliable traceable ammonia gas standards as well as in situ analytical procedures for the monitoring of ammonia in ambient air. The permeation method is an effective tool for dynamically generating precise gas standards with a low uncertainty in the concentration range of a few nmol/mol to several µmol/mol in an inert carrier gas, e. g. pure nitrogen or purified ambient air. Here, we present our ammonia gas standard generator as well as results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. In order to detect ammonia in the nmol/mol-range, a suitable sensor has to be developed. In this contribution, we therefore additionally present first approaches on the development of such a sensor using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution. Incorporation of a fluorescent dye, which shows fluorescence enhancement in the presence of ammonia, into a polymer matrix allows to reversibly recognize low amounts of ammonia. It can be concluded that fluorescence sensor is a robust tool for measurements of ammonia; however it needs calibration for the planed use. T2 - MetNH3-workshop on the progress in ammonia metrology CY - Braunschweig, Germany DA - 24.02.2016 KW - Ammonia KW - Fluorescence sensor KW - Permeation KW - Test gas generation PY - 2016 AN - OPUS4-35810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Gawlitza, Kornelia A1 - Bartholmai, Matthias T1 - Development of a gas standard generator N2 - Pollution through emission of toxic gases is an increasing problem for the environment. It affects similarly agricultural, industrial and urban areas. In future, environmental emissions in ambient air must be monitored at even lower concentrations as nowadays. One environmental relevant compound is ammonia and its conversion product ammonium that have strong negative impact on human health and ecosystems. Most ammonia measurements in ambient air are performed in the range below 1000 nmol·mol-1 and thus there is a need for reliable traceable ammonia gas standards and in addition in situ analytical procedures for monitoring (in ambient air to avoid that thresholds are exceeded). Therefore, the use of reference materials is necessary for development accompanying test or for calibration, e. g. of structure-integrated sensors and mobile multi-gas sensors. The developed gas standard generator produces gas mixtures that comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range. The method is based on the permeation of ammonia through a membrane at constant temperature and pressure. The resulting ammonia penetrant gas flow is then mixed with a carrier gas flow to generate a gas standard flow of known concentration. The dynamic rage is enlarged by using a two dilution steps. Depending on the permeation rate, generable molar fractions are possible in the range nmol·mol-1 to a few µmol·mol-1. We present the design of an ammonia gas standard generator and first results of the characterisation of its individual components supporting the uncertainty assessment according to GUM for stable gas concentrations in this range. The relative uncertainty of the generated ammonia gas standard is smaller than 4 % (k = 2). T2 - Colloquium of Optical Spectrometry (COSP) CY - Berlin, Germany DA - 27.11.2017 KW - Gas standard generator KW - Permeation method KW - Ammonia PY - 2017 AN - OPUS4-43337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -