TY - JOUR A1 - Gawlitza, Kornelia A1 - Fischer, Tobias A1 - Rurack, Knut T1 - Chemical functionalization for quantitative spectroscopic labeling on macroscopically flat surfaces N2 - This chapter highlights the application of chemical derivatization (CD) to facilitate the quantification of surface functional groups being an important issue for a wide field of applications. The selective attachment of a chemical label to a surface functional group being afterwards exclusively detectable by a highly sensitive technique overcomes the problem of characterizing low amounts of functional groups on macroscopically flat surfaces. The most frequently employed methods include CD X-ray photoelectron spectroscopy, ultraviolet/visible absorption, and fluorescence spectroscopy, as well as time-of-flight secondary ion mass spectrometry. Herein, the basic conditions for the different techniques regarding the specific surface functional group which need to be quantified are discussed. Additionally, the substrate highly influences the compatibility of the corresponding method. Because not just the quantification but also the preparation of the desired application is important, a summary of different preparation methods for glass, polymer and gold substrates is presented. KW - Chemical derivatization KW - Fluorescence KW - Surface group quantification KW - Time-of-flight secondary ion mass spectrometry KW - UV/vis spectroscopy KW - X-ray photoelectron spectroscopy PY - 2018 SN - 978-0-12-409547-2 U6 - https://doi.org/10.1016/B978-0-12-409547-2.13191-9 SP - 1 PB - Elsevier AN - OPUS4-43767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-471267 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Die 3D-Mikrofluidik mit molekular geprägten Polymerpartikeln eröffnet neue Möglichkeiten der selektiven Pestizid-Bestimmung in Wasser N2 - 2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein. KW - 3D-Mikrofluidik KW - Sensorpartikel KW - MIP KW - Pestizid PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444781 UR - https://www.labo.de/epaper/LA0318/index.html SN - 0344-5208 IS - 3 SP - 10 EP - 13 PB - WEKA Business Medien GmbH AN - OPUS4-44478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell N2 - Dual-fluorescent molecularly imprinted nanoparticles with a red-emissive carbon nanodot-doped silica core and a chlorogenic acid-imprinted fluorescent polymer layer are prepared and their use in ratiometric fluorometric analysis is described. Nanoparticle probes consisting of a shielded and stably emitting core and a shell with embedded binding sites that indicates the presence of an analyte with a change in emission allow for internally referenced measurements potentially accounting for detrimental influences from instrument drifts, light source fluctuations or sensor materials-related inhomogeneities. KW - Molecular imprinting KW - Fluorescence KW - Core-shell particles KW - Chlorogenic acid KW - Ratiometric measurement PY - 2021 U6 - https://doi.org/10.1007/978-1-0716-1629-1_17 VL - 2359 SP - 195 EP - 208 PB - Springer CY - Humana, New York, NY AN - OPUS4-53336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, S. A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Verhassel, A. A1 - Sternbæk, L. A1 - Wang, T. A1 - Persson, J. L. A1 - Härkönen, P. A1 - Johansson, E. A1 - Caraballo, R. A1 - Elofsson, M. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Ohlsson, L. A1 - El-Schich, Z. A1 - Gjörloff Wingren, A. A1 - Stollenwerk, M. M. T1 - Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-coated Polystyrene Cores - Assessment of the Binding Behavior to Cancer Cells N2 - Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha-2,3- and alpha-2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha-2,3-SA) and Sambucus Nigra Lectin (SNA, alpha-2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells. KW - Cancer KW - Imprinting KW - Molecularly imprinted polymers KW - SA conjugates KW - Sialic acid PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546625 SN - 2072-6694 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-54662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents N2 - In this work, molecular imprinting was combined with direct fluorescence detection of the pesticide Glyphosate (GPS). Firstly, the solubility of highly polar GPS in organic solvents was improved by using lipophilic tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) counterions. Secondly, to achieve fluorescence detection, a fluorescent crosslinker containing urea-binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm fluorescent molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles using chloroform as porogen. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+ in a biphasic assay, enabling the direct fluorescence detection and quantification of GPS in water. A limit of detection of 1.45 μM and a linear range of 5–55 μM were obtained, which match well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 μM). KW - Glyphosate KW - Molecular imprinting KW - Core-shell particles KW - Fluorescent sensors PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555281 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 15 PB - Macmillan Publishers Limited CY - London AN - OPUS4-55528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Beyer, S. A1 - El-Schich, Z. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Gjörloff-Wingren, A. T1 - Imprinted Particles for Direct Fluorescence Detection of Sialic Acid in Polar Media and on Cancer Cells with Enhanced Control of Nonspecific Binding N2 - Glycoproteins are abundant on the cell surface of mammals, providing structural support, modulating cell Membrane properties, and acting as signaling agents. Variation of glycosylation patterns has been found to indicate various disease states, including cell malignancy. Sialic acid (SA) is present as a terminating group on cell-surface glycans, and its overexpression has been linked to several types of cancer. Detection of SA on the cell surface is therefore critical for detection of cancer in its early stages. In this work, a fluorescent molecularly imprinted polymer layer targeting SA was synthesized on the surface of silica-coated polystyrene (PS) particles. Compared to previous works, a PS core supplies a lighter, lower-density support for improved suspension stability and scattering properties. Moreover, their smaller size provides a higher surface-area-to-volume ratio for binding. The incorporation of a fluorescent monomer in the MIP shell allowed for simple and rapid determination of binding specificity in polar media due to a deprotonation−reprotonation interaction mechanism between the fluorescent monomer and SA, which led to spectral changes. Upon titration of the MIP particles with SA in suspension, an increase in fluorescence emission of the particles was observed, with the MIP particles binding SA more selectively compared to the nonimprinted polymer (NIP) control particles. In cell staining experiments performed by flow cytometry, the binding behavior of the MIP particles compared favorably with that of SA-binding lectins. NIPs prepared with a “dummy” template served as a better negative control in cell binding assays due to the favorable inward orientation of template-binding functional groups in the polymer shell, which reduced nonspecific binding. The results show that fluorescent MIPs targeting SA are a promising tool for in vitro fluorescence staining of cancerous cells and for future diagnosis of cancer at early stages. KW - Flow cytometry KW - Sialic acid KW - Fluorescence KW - Molecularly imprinted polymers KW - Cancer cells PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525216 VL - 3 IS - 5 SP - 2363 EP - 2373 PB - American Chemical Society AN - OPUS4-52521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar smallmolecule detection directly in aqueous samples N2 - Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phasetransfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world. KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Core-shell particles KW - Droplets PY - 2018 U6 - https://doi.org/10.1016/j.bios.2017.07.053 SN - 0956-5663 VL - 99 IS - 1 SP - 244 EP - 250 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-42258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mit Tröpfchen Spielen N2 - Mikrofluidische Systeme sind leistungsstarke analytische Tools mit attraktiven Eigenschaften wie miniaturisierter Größe, geringem Reagenzien und Probenverbrauch, schneller Ansprech- und kurzer Messzeit. Der Bedarf solcher leistungsstarken, miniaturisierten und direkt vor Ort anwendbaren Sensorsysteme steigt kontinuierlich, hauptsächlich durch das Bedürfnis der Gesellschaft, schneller, besser und umfassender über kritische Faktoren im Lebens- und Arbeitsumfeld sowie der Umwelt informiert zu sein. KW - Mikrofluidik KW - Sensorpartikel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-459120 UR - https://www.git-labor.de/forschung/umwelt/mit-troepfchen-spielen VL - 8 IS - 8 SP - 2 EP - 4 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Deutschland AN - OPUS4-45912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -