TY - JOUR A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar smallmolecule detection directly in aqueous samples N2 - Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phasetransfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world. KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Core-shell particles KW - Droplets PY - 2018 U6 - https://doi.org/10.1016/j.bios.2017.07.053 SN - 0956-5663 VL - 99 IS - 1 SP - 244 EP - 250 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-42258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -