TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Garcés, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi + 15% Al2O3 under compression N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar random short fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Neutron Diffraction KW - Damage KW - Metal Matrix Composites KW - Load Partition KW - Synchrotron CT PY - 2016 U6 - https://doi.org/10.1016/j.scriptamat.2016.05.023 SN - 1359-6462 VL - 122 SP - 115 EP - 118 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez, P. A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Adeva, Paloma T1 - Influence of long period stacking ordered phase arrangements on thecorrosion behaviour of extruded Mg97Y2Zn1 alloy N2 - The influence of second phase arrangements on the corrosion resistance of extruded Mg97Y2Zn1 alloy has been evaluated in a 0.1 M NaCl solution. The microstructure of the alloy consists of a high volume fraction of coarse elongated particles of a long period stacking ordered phase aligned along the extrusion direction. Corrosion rate of transversal sections is lower than that of longitudinal sections. Such difference is attributed to the different orientation of second phases in longitudinal and transversal sections. The corrosion front advances mainly perpendicular to the surface in transversal samples while perpendicular and lateral growth occur in longitudinal samples KW - passive films KW - Magnesium alloys KW - anodic dissolution PY - 2016 U6 - https://doi.org/10.1016/j.corsci.2016.02.024 SN - 0010-938X VL - 107 SP - 107 EP - 112 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-36358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garcés, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H.K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension /compression asymmetry of a Mg–Y–Zn alloys N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterized by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase(o10vol%),with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. KW - plasticity KW - Magnesium alloy KW - LPSO PY - 2015 U6 - https://doi.org/doi:10.1016/j.msea.2015.09.003 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Requena, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi +15% Al2O3 under compression N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar randomshort fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Metal Matrix Composites KW - Damage KW - Load partition KW - Synchrotron CT KW - Neutron diffraction PY - 2016 VL - 122 SP - 115 EP - 118 PB - Elsevier Ltd. AN - OPUS4-37975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garcés, G. A1 - Pérez, P. A1 - Adeva, Paloma T1 - Properties of WZ21 (%wt) alloy processed by a powder metallurgy route N2 - Microstructure, mechanical properties and corrosion behaviour of WZ21 (%wt.) alloy prepared by a powder metallurgy route from rapidly solidified powders have been studied. Results were compared to those of the same alloy prepared through a conventional route of casting and extrusion. The microstructure of the extruded ingot consisted of α-Mg grains and Mg3Zn3Y2 (W-phase) and LPSO-phase particles located at grain boundaries. Moreover, stacking faults were also observed within α-Mg grains. The alloy processed by the powder metallurgy route exhibited a more homogeneous and finer microstructure, with a grain size of 2 µm. In this case W-phase and Mg24Y5 phase were identified, but not the LPSO-phase. The microstructural refinement induced by the use of rapidly solidified powders strengthened the alloy at room temperature and promoted superplasticity at higher strain rates. Corrosion behaviour in PBS medium evidenced certain physical barrier effect of the almost continuous arrangements of second phases aligned along the extrusion direction in conventionally processed WZ21 alloy, with a stable tendency around 7 mm/year. On the other hand, powder metallurgy processing promoted significant pitting corrosion, inducing accelerated corrosion rate during prolonged immersion times. KW - Magnesium KW - RE KW - Microstructure KW - Creep KW - Corrosion PY - 2015 U6 - https://doi.org/10.1016/j.jmbbm.2015.02.022 SN - 1751-6161 SN - 1878-0180 VL - 46 SP - 115 EP - 126 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-32704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Fernández, R. A1 - Garcés, G. A1 - Nieto-Luis, H. A1 - Gonzáles-Doncel, G. T1 - Fractional brownian motion of dislocations during creep deformation of metals N2 - The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8% and Al- 3.85%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character. KW - Metals KW - Fractional brownian motion KW - Creep deformation PY - 2020 U6 - https://doi.org/10.1016/j.msea.2020.140013 VL - 796 SP - 140013 PB - Elsevier B.V. CY - Paris AN - OPUS4-51450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garces, G. A1 - Perez, P. A1 - Cabeza, Sandra A1 - Lin, H. K. A1 - Kim, S. A1 - Gan, W. A1 - Adeva, Paloma T1 - Reverse tension/compression asymmetry of a Mg-Y-Zn alloys containing LPSO phases N2 - Room temperature mechanical behavior of extruded Mg–Y–Zn alloys with varying fractions of LPSO phase was studied in tension and compression along the extrusion direction. The microstructure is characterised by elongated LPSO fibers along the extrusion direction within the magnesium matrix. Moreover, the magnesium matrix presents a bimodal grain structure with dynamically-recrystallized grains and deformed, elongated grains with the basal plane parallel to the extrusion direction. The beginning of plasticity depends on the volume fraction of deformed and DRX grains. Alloys with low volume fraction of LPSO phase (<10 vol%), with a high volume fraction of deformed grains, show the typical behavior of extruded magnesium alloys where yield stress in tension is higher than in compression. This effect is, however, reversed as the volume fraction of the LPSO phase increases since DRX grains are majority. PY - 2015 U6 - https://doi.org/10.1016/j.msea.2015.09.003 SN - 0921-5093 SN - 1873-4936 VL - 647 SP - 287 EP - 293 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Garcés, G. A1 - Bruno, Giovanni T1 - Explaining Deviatoric Residual Stresses in Aluminum Matrix Composites with Complex Microstructure N2 - The residual stresses in multiphase metal Matrix composites with both random planar-oriented short fibers and particles were studied by neutron diffraction and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observed that randomly oriented phases possess non-hydrostatic residual stress. The recently developed modeling Approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses Accounting for the interaction of random oriented phases with fibers having preferential orientation. KW - Metal matrix composite KW - Residual stress KW - Deviatoric KW - Micromechanics PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506472 VL - 51 IS - 6 SP - 3104 EP - 3113 PB - Springer AN - OPUS4-50647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Fernández, R. A1 - González-Doncel, G. A1 - Garcés, G. T1 - Towards a comprehensive understanding of creep: Microstructural dependence of the pre-exponential term in Al N2 - We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al–Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure Al99.8% and Al–Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas. KW - Creep KW - Aluminum alloys KW - Dislocations KW - Fractal KW - Stress exponent KW - Neutron diffraction PY - 2020 U6 - https://doi.org/10.1016/j.msea.2020.139036 VL - 776 SP - 139036 AN - OPUS4-50437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Sevostianov, I. A1 - Requena, G. A1 - Boin, M. A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one and two ceramic reinforcements. Part II: Effect of reinforcement orientation N2 - While there is a large body of literature on the micro-mechanical behavior of metal matrix composites (MMCs) under uniaxial applied stress, very little is available on multi-phase MMCs. In order to cast light on the reinforcement mechanisms and damage processes in such multi-phase composites, materials made by an Al-based piston alloy and containing one and two ceramic reinforcements (planar-random oriented alumina fibers and SiC particles) were studied. In-situ compression tests during neutron diffraction experiments were used to track the load transfer among phases, while X-ray computed tomography on pre-strained samples was used to monitor and quantify damage. We found that damage progresses differently in composites with different orientations of the fiber mat. Because of the presence of intermetallic network, it was observed that the second ceramic reinforcement changed the load transfer scenario only at very high applied load, when also intermetallic particles break. We rationalized the present results combining them with previous investigations and using a micromechanical model. KW - Multi-phase KW - Metal matrix composites KW - Intermetallics KW - Computed tomography KW - In-situ neutron diffraction KW - Piston alloy KW - Load transfer PY - 2020 U6 - https://doi.org/10.1007/s10853-019-04069-4 SN - 1573-4803 VL - 55 IS - 3 SP - 1049 EP - 1068 PB - Springer AN - OPUS4-49460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garces, G. A1 - Requena, G. A1 - Bruno, Giovanni A1 - Sevostianov, I. T1 - Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two ceramic reinforcements N2 - Two composites, consisting of an as-cast AlSi12CuMgNi alloy reinforced with 15%vol. Al2O3 short fibres and with 7%vol. Al2O3 short fibres + 15%vol. SiC particles were studied. Synchrotron computed tomography disclosed distribution, orientation, and volume fraction of the different phases. In-situ compression tests during neutron diffraction in direction parallel to the fibres plane revealed the load partition between phases. Internal damage (fragmentation) of the Si phase and Al2O3 fibres was directly observed in CT reconstructions. Significant debonding between Al-matrix and SiC particles was also found. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the new composite with two ceramic reinforcements; it rationalizes the experimental data, and predicts the evolution of all internal stress components in each phase. KW - Computed tomography KW - Metal matrix composite KW - Load partition KW - Neutron diffraction PY - 2017 U6 - https://doi.org/10.1007/s10853-017-1182-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 17 SP - 10198 EP - 10216 PB - Springer AN - OPUS4-40572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Cabeza, Sandra A1 - Garces, G. ED - Petzow, G. T1 - Synchrotron-Absorptionskantentomographie zur dreidimensionalen Gefügeuntersuchung von Mg-Y-Zn Legierungen N2 - Absorptionskantentomographie, auch bekannt als differentielle Tomographie an Kanten, ist ein Verfahren, bei dem ausgenutzt wird, dass sich die Schwächung von Röntgenstrahlen beim Übergang der Photonenenergie über die Absorptionskanten sprunghaft ändert. Die Verwendung von Synchrotronstrahlung ermöglicht die Anwendung der Absorptionskantentomographie für nahezu jedes Element, da sie eine intensive, durchstimmbare Strahlenquelle mit kleiner Bandbreite darstellt. Der Mikrotomographieaufbau der BAM am Elektronenspeicherring BESSY II eignet sich mit einem Energiebereich von 5 keV bis über 60 keV und einer Ortsauflösung besser als 0.5 µm zur differentiellen Tomographie an den K-Kanten der Elemente von Chrom bis zu den Lanthaniden, bei Einbeziehung der L-Kante bis zu Uran. In dieser Arbeit wird die Absorptionskantentomographie ausgenutzt, um das Gefüge von Legierungen dreidimensional und nichtdestruktiv zu vermessen. Als Beispiel wird eine Legierung zwischen Magnesium, Yttrium und Zink analysiert, die sich gegenüber unlegiertem Magnesium durch größere Festigkeit und geringere Korrosionsanfälligkeit auszeichnet. Der Grund dafür liegt in der Bildung einer kristallographisch hochgeordneten Phase (long period stacking ordered - LPSO) der Legierungsbestandteile, die die Matrix in Form von Fasern durchzieht. Anhand ihres Yttriumgehaltes wird die dreidimensionale Verteilung der LPSO-Phase in der Matrix für verschiedene Proben bestimmt und mit Schnittbildern und Korrosionstests verglichen. Die Absorptionskantentomographie erweist sich als eine geeignete Methode, um die dreidimensionale Mikrostruktur von Legierungen zu charakterisieren. T2 - 51. Metallographie-Tagung Materialographie CY - Aalen, Germany DA - 13.09.2017 KW - Tomographie KW - Absorptionskante KW - Synchrotron KW - Legierung PY - 2017 SN - 978-3-88355-415-0 SP - 177 EP - 178 PB - Deutsche Gesellschaft für Materialkunde eV AN - OPUS4-42218 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Garces, G. A1 - Adeva, Paloma A1 - Kabra, S. A1 - Gan, W. T1 - Effect of Extrusion Temperature on the Plastic Deformation of an Mg-Y-Zn Alloy Containing LPSO Phase Using In Situ Neutron Diffraction N2 - The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension–compression asymmetry. KW - Mg-Y-Zn Alloy KW - LPSO Phase KW - Neutron Diffraction PY - 2017 U6 - https://doi.org/10.1007/s11661-017-4284-6 VL - 48A IS - 11 SP - 5332 EP - 5343 PB - Spinger AN - OPUS4-42935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, I. A1 - Garces, G. A1 - Requena, G. A1 - Fernández, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSi12CuMgNi alloy N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Computed tomography PY - 2018 U6 - https://doi.org/10.1016/j.msea.2018.08.070 VL - 736 SP - 453 EP - 464 PB - Elsevier B.V. AN - OPUS4-45927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -