TY - JOUR A1 - Drzymala, Sarah A1 - Weiz, S. A1 - Heinze, J. A1 - Marten, S. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Garbe, L.-A. A1 - Koch, Matthias T1 - Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil N2 - Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70–120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid&–liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 µg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach. KW - Dynamic covalent hydrazine chemistry (DCHC) KW - Maize germ oil KW - Food KW - Mycotoxin KW - ZEA KW - Isomerisation KW - Occurrence KW - Edible oil KW - SIDA KW - LC-MS/MS KW - Quantification PY - 2015 U6 - https://doi.org/10.1007/s00216-015-8541-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 12 SP - 3489 EP - 3497 PB - Springer CY - Berlin AN - OPUS4-33067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Binder, J. A1 - Brodehl, Antje A1 - Penkert, M. A1 - Rosowski, M. A1 - Garbe, L.-A. A1 - Koch, Matthias T1 - Estrogenicity of novel phase I and phase II metabolites of zearalenone and cis-zearalenone N2 - Zearalenone and its cis-isomer, cis-zearalenone, are nonsteroidal mycotoxins that elicit an estrogenic response upon binding to the estrogen receptor. This study compares the estrogenicity of eleven congeners including novel metabolites as 15-OH-zearalenone, zearalenone-14-sulfate, α-cis-zearalenol and β-cis-zearalenol using the E-Screen assay. Overall, a change in the configuration from trans to cis retains significant estrogenic activity. In contrast, alterations of the aromatic moiety including hydroxylation and sulfation showed a markedly decreased estrogenicity when compared to zearalenone. KW - Zearalenone KW - Mycotoxin KW - MCF-7 KW - E-screen assay KW - Estrogenicity KW - Isomerization PY - 2015 U6 - https://doi.org/10.1016/j.toxicon.2015.08.027 SN - 0041-0101 SN - 1879-3150 VL - 105 SP - 10 EP - 12 PB - Elsevier CY - Oxford [u.a.] AN - OPUS4-34167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -