TY - JOUR A1 - Oberleitner, Lidia A1 - Grandke, Julia A1 - Mallwitz, F. A1 - Resch-Genger, Ute A1 - Garbe, L.-A. A1 - Schneider, Rudolf T1 - Fluorescence polarization immunoassays for the quantification of caffeine in beverages N2 - Homogeneous fluorescence polarization immunoassays (FPIAs) were developed and compared for the determination of caffeine in beverages and cosmetics. FPIAs were performed in cuvettes in a spectrometer for kinetic FP measurements as well as in microtiter plates (MTPs) on a multimode reader. Both FPIAs showed measurement ranges in the µg/L range and were performed within 2 and 20 min, respectively. For the application on real samples, high coefficients of variations (CVs) were observed for the performance in MTPs; the CVs for FPIAs in cuvettes were below 4%. The correlations between this method and reference methods were satisfying. The sensitivity was sufficient for all tested samples including decaffeinated coffee without preconcentration steps. The FPIA in cuvettes allows a fast, precise, and automated quantitative analysis of caffeine in consumer products, whereas FPIAs in MTPs are suitable for semiquantitative high-throughput screenings. Moreover, specific quality criteria for heterogeneous assays were applied to homogeneous immunoassays. KW - caffeine KW - Decaffeinated coffee KW - Fluorescence polarization immunoassay KW - Homogeneous immunoassay KW - Quality assurance criteria PY - 2014 U6 - https://doi.org/10.1021/jf4053226 SN - 0021-8561 SN - 1520-5118 VL - 62 IS - 11 SP - 2337 EP - 2343 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-30613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Herrmann, Antje A1 - Maul, Ronald A1 - Pfeifer, Dietmar A1 - Garbe, L.-A. A1 - Koch, Matthias T1 - In vitro phase I metabolism of cis-zearalenone N2 - The present study investigates the in vitro phase I metabolism of cis-zearalenone (cis-ZEN) in rat liver microsomes and human liver microsomes. cis-ZEN is an often ignored isomer of the trans-configured Fusarium mycotoxin zearalenone (trans-ZEN). Upon the influence of (UV-) light, trans-ZEN isomerizes to cis-ZEN. Therefore, cis-ZEN is also present in food and feed. The aim of our study was to evaluate the in vitro phase I metabolism of cis-ZEN in comparison to that of trans-ZEN. As a result, an extensive metabolization of cis-ZEN is observed for rat and human liver microsomes as analyzed by HPLC-MS/MS and high-resolution MS. Kinetic investigations based on the substrate depletion approach showed no significant difference in rate constants and half-lives for cis- and trans-ZEN in rat microsomes. In contrast, cis-ZEN was depleted about 1.4-fold faster than trans-ZEN in human microsomes. The metabolite pattern of cis-ZEN revealed a total of 10 phase I metabolites. Its reduction products, α- and β-cis-zearalenol (α- and β-cis-ZEL), were found as metabolites in both species, with α-cis-ZEL being a major metabolite in rat liver microsomes. Both compounds were identified by co-chromatography with synthesized authentic standards. A further major metabolite in rat microsomes was monohydroxylated cis-ZEN. In human microsomes, monohydroxylated cis-ZEN is the single dominant peak of the metabolite profile. Our study discloses three metabolic pathways for cis-ZEN: reduction of the keto-group, monohydroxylation, and a combination of both. Because these routes have been reported for trans-ZEN, we conclude that the phase I metabolism of cis-ZEN is essentially similar to that of its trans isomer. As trans-ZEN is prone to metabolic activation, leading to the formation of more estrogenic metabolites, the novel metabolites of cis-ZEN reported in this study, in particular α-cis-ZEL, might also show higher estrogenicity. KW - Cis-ZEN KW - Phase I metabolism KW - LC-MS/MS KW - HRMS KW - Depletion kinetics PY - 2014 U6 - https://doi.org/10.1021/tx500312g SN - 0893-228X SN - 1520-5010 VL - 27 IS - 11 SP - 1972 EP - 1978 PB - Soc. CY - Washington, DC, USA AN - OPUS4-32071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Riedel, Juliane A1 - Köppen, Robert A1 - Garbe, L.-A. A1 - Koch, Matthias T1 - Preparation of 13C-labelled cis-zearalenone and its application as internal standard in stable isotope dilution analysis N2 - Pure U-[13C18]-labelled cis-zearalenone (cis-ZEA) has been prepared and characterised as internal standard (ISTD) for a reliable quantification of cis-ZEA in contaminated food and feed products. The cis-isomer of the naturally trans-configurated Fusarium mycotoxin zearalenone is often neglected. However, isomerisation easily occurs by exposure of ZEA to (UV-)light. Thus, the applicability of the new cis-ZEA ISTD was demonstrated in a long-term isomerisation study comparing naturally trans-ZEA-contaminated edible oil with spiked edible oil. To estimate the benefits of the newly prepared cis-ZEA ISTD, various approaches to quantify cis-ZEA by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) were compared. As a result, a significant bias was revealed if no appropriate cis-ZEA standards are used. Furthermore, the new ISTD was applied to the analysis of 15 edible oils by stable isotope dilution analysis in combination with HPLC-electrospray ionisation-MS/MS. One of the maize germ oils showed the presence of cis-ZEA above LOD (>0.3 µg/kg), whereas two out of 15 maize germ oils were found to be contaminated with trans-ZEA (range 17.0-31.0 µg/kg). KW - ZEA KW - Zearalenone KW - Isomerisation KW - Occurrence KW - Edible oil KW - SIDA KW - HPLC-MS/MS KW - Quantification KW - LC-MS/MS PY - 2014 U6 - https://doi.org/10.3920/WMJ2013.1610 SN - 1875-0710 SN - 1875-0796 VL - 7 IS - 1 SP - 45 EP - 52 PB - Wageningen Academic Publishers CY - Wageningen AN - OPUS4-30126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -