TY - CONF A1 - Gaal, Mate A1 - Daschewski, Maxim A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Dohse, Elmar A1 - Kreutzbruck, Marc A1 - Weise, Matthias A1 - Beck, Uwe T1 - Novel air-coupled ultrasonic transducer combining the thermoacoustic with the piezoelectric effect N2 - In recent years, there has been an increasing industrial demand for one-sided inspection of various structures by means of air-coupled ultrasonic technique. Lightweight structures based on carbon-fibre-reinforced polymers may have very complex shapes, making air-coupled transmission difficult or even impossible. The inspection of concrete structures is another example where one-sided inspection is required. To address these challenges a new type of transducer for air-coupled pulse-echo inspection was developed, which unites two principles: thermoacoustic emission and piezoelectric reception. The thermoacoustic emitter is a titanium electrode with a thickness of several tens of nanometer. This electrode was deposited onto charged cellular polypropylene, which serves as a piezoelectric receiver. The thermoacoustic transmission is based on a transformation of the thermal energy of an electrically heated electrode into the acoustic energy of an ultrasonic wave. Thermoacoustic emitters provide resonance-free behaviour and thus extremely broadband pulses. Charged cellular polypropylene is piezoelectric due to the polarization of its cells and it is well matched to air, with a Young modulus in the order of magnitude of MPa. In this contribution we present some pulse-echo measurements with the first prototypes of the combined thermoacoustic-piezoelectric transducer. T2 - World Conference of Non-Destructive Testing CY - Munich, Germany DA - 13.6.2016 KW - Thermoacoustic KW - Piezoelectric KW - Ultrasonic transducer KW - Ferroelectret PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-367151 VL - 158 SP - Mo.1.F.4, 1 EP - 6 AN - OPUS4-36715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Daschewski, Maxim A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Dohse, Elmar A1 - Kreutzbruck, Marc A1 - Weise, Matthias A1 - Beck, Uwe T1 - Novel air-coupled ultrasonic transducer combining the thermoacoustic with the piezoelectric effect N2 - In recent years, there has been an increasing industrial demand for one-sided inspection of various structures by means of air-coupled ultrasonic technique. Lightweight structures based on carbon-fibre-reinforced polymers may have very complex shapes, making air-coupled transmission difficult or even impossible. The inspection of concrete structures is another example where one-sided inspection is required. To address these challenges a new type of transducer for air-coupled pulse-echo inspection was developed, which unites two principles: thermoacoustic emission and piezoelectric reception. The thermoacoustic emitter is a titanium electrode with a thickness of several tens of nanometer. This electrode was deposited onto charged cellular polypropylene, which serves as a piezoelectric receiver. The thermoacoustic transmission is based on a transformation of the thermal energy of an electrically heated electrode into the acoustic energy of an ultrasonic wave. Thermoacoustic emitters provide resonance-free behaviour and thus extremely broadband pulses. Charged cellular polypropylene is piezoelectric due to the polarization of its cells and it is well matched to air, with a Young modulus in the order of magnitude of MPa. In this contribution we present some pulse-echo measurements with the first prototypes of the combined thermoacoustic-piezoelectric transducer. T2 - World Conference of Non-Destructive Testing CY - Munich, Germany DA - 13.6.2016 KW - Ferroelectret KW - Thermoacoustic KW - Piezoelectric KW - Ultrasonic transducer PY - 2016 AN - OPUS4-36716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Beck, Uwe A1 - Daschewski, M. A1 - Kreutzbruck, M. T1 - Airborne ultrasonic systems for one-sided inspection using thermoacoustic transmitters N2 - Airborne ultrasonic inspection is performed in through transmission, where the test piece (e.g. adhesive joint or polymer-based composite plate) is placed between the transmitter and the receiver. However, many structures with difficult shapes allow only one-sided inspection. The strong reflection of the signal from the surface overshadows the signals from the inside, so that broadband pulses are required. Thermoacoustic transmission, where the thermal energy of an electrically heated electrode is transformed into the acoustic energy of an ultrasonic wave, opens the possibility to excite broadband pulses and thus to inspect objects with one-sided access. We present various thermoacoustic transducers consisting of an electrically conductive film on a solid substrate. The first type of transducer is a transmitter with an indium-tin-oxide electrode on a glass substrate combined with a laser Doppler vibrometer as a receiver. The second type of transducer combines thermoacoustic transmission and piezoelectric reception, having a titanium electrode as a transmitter deposited onto charged cellular polypropylene serving as a piezoelectric receiver. Using a focusing thermoacoustic transmitter and a separate cellular polypropylene receiver, a through-transmission inspection of a 4 mm thick CFRP test piece with inserts as small as 1 mm was performed. The same emitter and a laser vibrometer as a receiver were used for a one-sided inspection of a Plexiglas block with a cross hole at 15 mm depth. A twin probe consisting of a thermoacoustic transmitter on a cellular polypropylene receiver was applied to a profile measurement on a step wedge with flat bottom holes. The smallest detected diameter of a flat bottom hole was 1 mm. Sound pressure level above 140dB was achieved with each of these transmitters. Thermoacoustic transmitters enable a step towards one-sided air-coupled ultrasonic inspection. T2 - IEEE International Ultrasonics Symposium CY - Tours, France DA - 18.09.2016 KW - Airborne KW - Air-coupled KW - Ultrasonic transducer KW - Thermoacoustic KW - Ferroelectret PY - 2016 SN - 978-1-4673-9897-8 SN - 1948-5719 SP - (online publication) 1 EP - 4 AN - OPUS4-37620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Bartusch, Jürgen A1 - Beck, Uwe A1 - Daschewski, Maxim A1 - Kreutzbruck, Marc T1 - Airborne ultrasonic systems for one-sided inspection using thermoacoustic transmitters N2 - Airborne ultrasonic inspection is performed in through transmission, where the test piece (e.g. adhesive joint or polymer-based composite plate) is placed between the transmitter and the receiver. However, many structures with difficult shapes allow only one-sided inspection. The strong reflection of the signal from the surface overshadows the signals from the inside, so that broadband pulses are required. Thermoacoustic transmission, where the thermal energy of an electrically heated electrode is transformed into the acoustic energy of an ultrasonic wave, opens the possibility to excite broadband pulses and thus to inspect objects with one-sided access. We present various thermoacoustic transducers consisting of an electrically conductive film on a solid substrate. The first type of transducer is a transmitter with an indium-tin-oxide electrode on a glass substrate combined with a laser Doppler vibrometer as a receiver. The second type of transducer combines thermoacoustic transmission and piezoelectric reception, having a titanium electrode as a transmitter deposited onto charged cellular polypropylene serving as a piezoelectric receiver. Using a focusing thermoacoustic transmitter and a separate cellular polypropylene receiver, a through-transmission inspection of a 4 mm thick CFRP test piece with inserts as small as 1 mm was performed. The same emitter and a laser vibrometer as a receiver were used for a one-sided inspection of a Plexiglas block with a cross hole at 15 mm depth. A twin probe consisting of a thermoacoustic transmitter on a cellular polypropylene receiver was applied to a profile measurement on a step wedge with flat bottom holes. The smallest detected diameter of a flat bottom hole was 1 mm. Sound pressure level above 140dB was achieved with each of these transmitters. Thermoacoustic transmitters enable a step towards one-sided air-coupled ultrasonic inspection. T2 - IEEE International Ultrasonics Symposium CY - Tours, France DA - 18.9.2016 KW - Airborne KW - Air-coupled KW - Ferroelectret KW - Thermoacoustic KW - Ultrasonic transducer PY - 2016 AN - OPUS4-37621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grager, J.-C. A1 - Kotschate, Daniel A1 - Gamper, J. A1 - Gaal, Mate A1 - Pinkert, K. A1 - Mooshofer, H. A1 - Goldammer, M. A1 - Grosse, C. U. T1 - Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts N2 - Air-coupled ultrasound (ACU) is increasingly used for automated and contactless inspection of large-scale composite structures as well as for non-destructive testing (NDT) of water-sensitive or porous materials. The major challenge to overcome using ACU in NDT is the enormous loss of ultrasonic energy at each solid-air interface caused by the high acoustic impedance mismatch. Resonant low-frequency piezoceramic transducers are specially designed to achieve high sound pressure levels. For an expanded use of this technique, however, the spatial resolution needs to be increased. Recent studies of our collaborative research group demonstrated the successful application of a resonance-free, highly sensitive receiver that uses a Fabry-Pérot etalon instead of piezoceramic materials or membranes. However, to reach the full potential of this broadband small-aperture optical microphone, novel transmitter concepts have to be developed and evaluated for advanced NDT applications. Different types of transmitter were tested in combination with the optical microphone acting as receiver and they were compared to conventional piezoceramic transducers in through-transmission mode. Monolithic carbon fiber-reinforced plastics (CFRP) and CFRP sandwich structures containing different defect types were inspected. Presented results are processed as C-scan images and further evaluated for spatial resolution, signal-to-noise ratio and sensitivity of each measurement setup. Novel transmitter concepts, such as ferroelectret and thermoacoustic emitters, show promising findings with a considerably improved time and spatial resolution for ACU-NDT. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Optical microphone KW - Thermoacoustic KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-452114 SP - ECNDT-0166-2018, 1 EP - 10 AN - OPUS4-45211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Kotschate, Daniel A1 - Wendland, Saskia T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Transducers KW - Ferroelectret KW - Thermoacoustic KW - Plasma KW - Polymer testing PY - 2018 AN - OPUS4-46655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -