TY - JOUR A1 - Einhorn-Stoll, U. A1 - Benthin, A. A1 - Zimathies, Annett A1 - Görke, O. A1 - Drusch, S. T1 - Pectin-water interactions: comparison of different analytical methods and influence of storage N2 - Interactions of pectin with water are essential for nearly all pectin applications. It was assumed that these interactions strongly depend not only on chemical molecular parameters but also on physical powder material properties and that they might be affected by storage. This was examined with nine different pectin samples from three suppliers. Storage at 60 °C and 80% humidity for two weeks was used in order to simulate long term storage at moderate conditions. Material properties were tested by measuring solid density and BET surface and by mercury porosimetry and X-ray analysis. Pectin-water interactions were examined with two different methods, a modified sorption method at αw around 1.0 and the capillary sucking method (Baumann method). After storage, the BET surface of the pectin samples was reduced, solid density was altered differently and crystalline structures became amorphous. It is assumed that storage at high heat and humidity caused particle surfaces softening, swelling and partly dissolution. The particle surfaces smoothed, small inter-particle voids were reduced or sealed and particles agglomerated. These alterations caused a reduced water uptake of stored pectins. In general, the accessibility of hydrophilic groups in pectin was more important for pectin-water interactions than their number. All applied methods for testing pectin-water interactions detected special sample properties and their combination allowed an extensive evaluation of the water binding properties. KW - Pectin KW - Material properties KW - Water binding KW - Storage PY - 2015 U6 - https://doi.org/10.1016/j.foodhyd.2014.07.013 SN - 0268-005X VL - 43 SP - 577 EP - 583 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-31634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gili, A. A1 - Bischoff, B. A1 - Simon, U. A1 - Schmidt, Franziska A1 - Kober, D. A1 - Görke, O. A1 - Bekheet, M. A1 - Gurlo, A. T1 - Ceria-based dual-phase membranes for high-temperature Carbon dioxide separation: Effect of iron doping and pore generation with MgO template N2 - Dual-phase membranes for high-temperature carbon dioxide Separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement These membranes industrially, the carbon dioxide permeability must be improved. In this study, Ce_(0.8) Sm_(0.2) O_(2-d) (SDC) and Ce_(0.8)Sm_(0.19)Fe_(0.01)O_(2-d) (FSDC) ceramic powders were used to form the skeleton in dual-Phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membrane’s ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system. KW - Samarium doped ceria KW - SDC KW - FSDC KW - CO2 separation membranes KW - Scavenging effect of iron KW - Permeability PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-488612 SN - 2077-0375 VL - 9 IS - 9 SP - 108, 1 EP - 15 PB - MDPI AN - OPUS4-48861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hmood, F. A1 - Schmidt, Franziska A1 - Görke, O. A1 - Günster, Jens T1 - Investigation of chemically modified ICIE16 bioactive glass, part II N2 - Chemically modified bioactive glasses based on ICIE16 were prepared with the melt-quenching method using water as a quenching medium. The sinterability of these bioactive glasses was investigated and is discussed in this article. The sintering experiments were conducted with different sintering temperatures, sintering times and heating rates. Those parameters are crucial for dense glass with an amorphous structure. The particle size (d50) of the starting glass powder was determined at 88 μm and kept constant. The pre-pressed glass pellets were cold-isostatically pressed at 300 MPa to a green density of around 63 %. Density development, phase identification, shrinkage behavior and the microstructure were investigated to determine the sinterability of the developed glasses. The glass powders were sintered at different temperatures inside the processing window while crystallization was monitored. The results have shown that the sinterability of the developed glasses strongly dependsonthe proposed chemical additions. The highest density reached was 96 %, which belongs to BP1 glass with sintering conditions of 20 K/min heating rate for 60 min at 750 °C. KW - Bioactive glass KW - Viscous sintering KW - Crystallization KW - Processing window KW - Grain boundary PY - 2019 U6 - https://doi.org/10.4416/JCST2019-00031 VL - 11 IS - 1 SP - 1 EP - 9 PB - Göller Verlag AN - OPUS4-49913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Kamutzki, F. A1 - Zocca, Andrea A1 - Görke, O. A1 - Günster, Jens A1 - Gurlo, A. T1 - Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant N2 - Here we demonstrate that by applying exclusively Martian resources a processing route involving suspensions of mineral particles called slurries or slips can be established for manufacturing ceramics on Mars. We developed water-based slurries without the use of additives that had a 51 wt. % solid load resembling commercial porcelain slurries in respect to the particle size distribution and rheological properties. These slurries were used to slip cast discs, rings and vases that were sintered at temperatures between 1000 and 1130 °C using different sintering schedules, the latter were set-up according the results of hot-stage microscopic characterization. The microstructure, porosity and the mechanical properties were characterized by SEM, X-ray Computer tomography and Weibull analysis. Our wet processing of minerals yields ceramics with complex shapes that show similar mechanical properties to porcelain and could serve as a technology for future Mars colonization. The best quality parts with completely vitrificated matrix supporting a few idiomorphic crystals are obtained at 1130 °C with 10 h dwell time with volume and linear shrinkage as much as ~62% and ~17% and a characteristic compressive strength of 51 MPa. KW - Ceramic KW - Mars PY - 2018 U6 - https://doi.org/10.1371/journal.pone.0204025 SN - 1932-6203 VL - 13 IS - 10 SP - e0204025, 1 EP - 7 PB - Public Library of Science CY - San Francisco, Kalifornien, Vereinigte Staaten AN - OPUS4-46612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -