TY - GEN A1 - Algernon, D. A1 - Arndt, R. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C. A1 - Kathage, S. A1 - Keßler, S. A1 - Kurz, J. A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Richtlinie B-LF 01: Leitfaden zur Erstellung von Prüfanweisungen für die Zerstörungsfreie Prüfung im Bauwesen (ZfP Bau) N2 - Der vorliegende Leitfaden dient zur Unterstützung der Entwicklung und Umsetzung von Prüfanweisungen für ZfP-Verfahren im Bauwesen. Er gibt einen Überblick über Verwendungszweck, Erstellung und Inhalte von Prüfanweisungen unter Berücksichtigung einheitlicher Standardisierungsziele. KW - Prüfanweisung KW - Beton KW - Leitfaden PY - 2022 SN - 978-3-947971-23-7 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V. (DGZfP) CY - Berlin ET - 1. Aufl., April 2022 AN - OPUS4-54985 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feistkorn, S. A1 - Algernon, D. A1 - Arndt, R. A1 - Ebell, Gino A1 - Friese, M. A1 - Grosse, C. U. A1 - Holstein, R. A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schulze, S. A1 - Taffe, A. A1 - Walther, A. A1 - Wolf, J. A1 - Zoega, A. A1 - Zwanzig, M. T1 - Introduction to DIN 4871: Qualification of NDT Personnel in Civil Engineering (NDT-CE) N2 - Recently, non-destructive testing in civil engineering (NDT-CE), in particular of concrete components, has successfully mastered the leap from research to practice. Several methods have been established for field inspections to determine the concrete cover of reinforcement or to estimate the compressive strength as well as other parameters related to the concrete material. In addition, the application of nondestructive testing is indispensable, if information about the inner structure - such as the location of rebars and tendon ducts or the damage-related condition assessment to detect grouting defects, honeycombs, delamination, or corrosion - is required. Besides the selection of a suitable NDT method and an appropriate inspection system, the reliability of the results depends largely on the person who applies the non-destructive inspection technique and evaluates the inspection results. To ensure a high quality of non-destructive concrete evaluation as well as to keep the uncertainty caused by the inspection personnel to a minimum, structured, consistent and regulated theoretical as well as practical training of inspection personnel is essential. To close this gap, the subcommittee of education (UA-A) within the committee for NDT-CE of the German Society for Nondestructive Testing (DGZfP) has been reactivated in 2018 to establish uniform training standards for nondestructive concrete inspections in the long term. The subcommittee consists of scientists, practitioners, authorities, and clients. So far, the national standard DIN 4871 “Non-destructive testing - Qualification and Certification of NDT personnel in Civil Engineering (NDT-CE)” was developed and is currently under review. This standard considers the civil-industry-specifics, for example, that standards for NDT of concrete, as well as related product standards with a few exceptions, still do not exist at the moment. Within this presentation, the concept, the connection to ISO 9712 and other standards as well as an overview of the developed German standard DIN 4871 will be presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Non-destrucive testing KW - Civil engineering PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555250 UR - https://www.ndt.net/article/ndtce2022/paper/66594_manuscript.pdf VL - 2022/09 SP - 1 EP - 12 PB - NDT.net CY - Bad Breisig AN - OPUS4-55525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feistkorn, S. A1 - Algernon, D. A1 - Arndt, R. A1 - Ebell, Gino A1 - Friese, M. A1 - Grosse, C. U. A1 - Holstein, R. A1 - Niederleithiger, Ernst A1 - Schickert, M. A1 - Schulze, S. A1 - Taffe, A. A1 - Walther, A. A1 - Wolf, J. A1 - Zoega, A. A1 - Zwanzig, M. T1 - Introduction to DIN 4871: Qualification of NDT Personnel in Civil Engineering (NDT‐CE) N2 - Recently, non-destructive testing in civil engineering (NDT-CE), in particular of concrete components, has successfully mastered the leap from research to practice. Several methods have been established for field inspections to determine the concrete cover of reinforcement or to estimate the compressive strength as well as other parameters related to the concrete material. In addition, the application of non-destructive testing is indispensable, if information about the inner structure - such as the location of rebars and tendon ducts or the damage-related condition assessment to detect grouting defects, honeycombs, delamination, or corrosion - is required. Besides the selection of a suitable NDT method and an appropriate inspection system, the reliability of the results depends largely on the person who applies the non-destructive inspection technique and evaluates the inspection results. To ensure a high quality of non-destructive concrete evaluation as well as to keep the uncertainty caused by the inspection personnel to a minimum, structured, consistent, and regulated theoretical as well as practical training of inspection personnel is essential. To close this gap, the subcommittee of education and training (UA-A) within the committee for NDT-CE of the German Society for Non-Destructive Testing (DGZfP) has been reactivated in 2018 to establish uniform training standards for non-destructive concrete inspections in the long term. The subcommittee consists of scientists, practitioners, authorities, and clients. So far, the national standard DIN 4871 “Non-destructive testing - Qualification of NDT personnel in Civil Engineering (NDT-CE)” was developed. This standard considers the civil-industry-specifics, for example, that standards for NDT of concrete, as well as related product standards with a few exceptions, still do not exist at the moment. Within this presentation, the concept, the connection to ISO 9712 and other standards as well as an overview of the recently developed German standard DIN 4871 will be presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Non-destrucive testing KW - Civil engineering PY - 2022 AN - OPUS4-55526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, A. A1 - Walther, A. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Grosse, C. A1 - Kathage, S. A1 - Kessler, S. A1 - Köpp, Christian A1 - Krause, M. A1 - Maack, Stefan A1 - Schickert, M. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Wilcke, M. A1 - Wolf, J. T1 - Qualitätssicherung und Validierung der Anwendung zerstörungsfreier Prüfungen von Stahlbetonbauteilen im Bauwesen N2 - Stahlbetontragwerke sind eine wichtige Konstruktionsweise im Bauwesen und ein wachsendes Anwendungsfeld für die Zerstörungsfreie Prüfung (ZfP). Zur Sicherung der Tragsicherheit, strukturellen Integrität, Bestimmung von Geometrien und zur Detektion konstruktiver Elemente wie z.B. Bewehrung, Verankerungen und Spannkanälen besitzen zerstörungsfreie Prüfverfahren in diesem Bereich inzwischen große Relevanz. Durch den bislang erreichten Fortschritt in der Forschung und Entwicklung haben moderne akustische und elektromagnetische Verfahren eine beachtliche Leistungsfähigkeit erreicht. Von Geräteherstellern sind diese in kommerziellen Produktserien umgesetzt worden und finden eine zunehmend breite Anwendung in der Praxis. In einigen anderen Anwendungsgebieten, in denen die ZfP bereits fester Bestandteil von Überwachungen ist, wie z.B. im Maschinenbau und insbesondere in der Kerntechnik und der Luftfahrt, existieren umfangreiche Qualitätssicherungssysteme für die konforme Anwendung und zuverlässige Einbeziehung der ZfP. Dem relativ jungen Entwicklungsstadium moderner ZfP für Stahlbetonbauteile entsprechend müssen solche Konzepte im Bauwesen erst noch entwickelt bzw. implementiert werden. Dementsprechend hat sich der Unterausschuss Qualitätssicherung (UA- S) des Fachausschusses ZfP im Bauwesen (ZfPBau) die Definition und Verbesserung der Qualität von ZfP-Anwendungen sowie insbesondere die verfahrensunabhängige Standardisierung von Prüfprozeduren und statistische Absicherung der Prüfergebnisse zum Ziel gemacht. Die aktuellen Arbeitsfelder beinhalten die Entwicklung praxisgerechter Konzepte für Prüfprozeduren und deren Erprobung in einem Ringversuch sowie die Konzeption von Testkörpern hinsichtlich unterschiedlicher Aspekte wie Parameterstudien, Validierung, Kalibrierung und Simulation. Dabei werden Ansätze anderer Branchen durchaus einbezogen, die Anpassung an die spezifischen Bedürfnisse und Gegebenheiten des Bauwesens wird jedoch als wesentlich angesehen und stellt somit eine wichtige Vorgabe dar. Da die Tätigkeiten nicht auf einzelne Verfahren begrenzt sind, müssen generelle Vorgehensweisen entwickelt werden, die sich auf die jeweiligen Verfahren konkretisieren lassen. Der Vortrag gibt hierzu erste Einblicke in die Arbeit des Ausschusses. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Zerstörungsfreie Prüfung KW - Beton KW - Qualitätssicherung KW - Validierung PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472417 SP - 1 EP - 9 AN - OPUS4-47241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - NDT procedures in relation to quality assurance and validation of nondestructive testing in civil engineering N2 - The field of non-destructive testing of civil structures (NDT-CE) has been continuously growing. Due to the complexity and diversity of civil constructions as well as the heterogeneity of concrete, specific standards or guidelines for the application of modern NDT-CE are still missing. The development of individual solutions is the current approach, which is just as challenging as it is common for NDT-CE. With the increasing development and commercialization of NDT-CE technology, the group of practitioners is growing. To ensure a good level of quality in the industry, it appears necessary to establish adequate means. Naturally, the performance of NDT-CE methods regarding a specific application is strongly dependent on choosing the most suitable inspection technique and applying it correctly, generally referred to as the inspection procedure in the field of NDT. There are well-defined guidelines regarding procedure documentation and handling in many fields of NDT (e.g. nuclear, aerospace or automotive) according to the high importance of procedures in assuring a successful and reliable application. For a long time, this has not always been the case with NDT-CE, which is still considered a unique discipline of NDT. Part of the reason for that might be the young development state of NDTCE, the heterogeneity of building materials like concrete, timber or masonry as a material and the diversity of civil structures. In consequence, NDT-CE procedure development is considered challenging. Among other aspects, addressed in the subcommittee on Quality Assurance (UA-QS) within the committee for NDT-CE of the German Society for Nondestructive Testing (DGZfP), part of its work aims at establishing an adequate basis for NDT-CE procedure development. While some of the highly developed approaches from other industries are taken into consideration, they need to be analyzed regarding their suitability for NDT-CE and adapted accordingly. For a procedure to be as defined as possible, it needs to contain sufficient information, such as the scope and limitations regarding material, geometry and condition of the test object, inspection parameters, calibration, data acquisition, analysis criteria as well as requirements regarding the inspection personnel. For a successful implementation in the field, it is important to define the specific procedure as precisely as possible. Despite the necessity of a great amount of information to be included, the procedure needs to be suitable for efficient field application. The UA-QS is developing a guideline for NDT-CE procedures suitable for application in this field of NDT to ensure correct and reproducible application. To demonstrate and evaluate this concept, specific examples of procedures are also produced. In particular, the UA-QS has developed a procedure for the detection and positioning of tendon ducts using Ground Penetrating Radar (GPR). This procedure is tested regarding the practical applicability in a roundrobin on a defined type of reference test block. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 31 EP - 38 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Test specimen concepts in regard to quality assurance and validation of nondestructive testing in civil engineering N2 - The process of ensuring reliability of NDT applications contains various aspects, such as determining the performance and probability of success, the uncertainty in measurement, the provision of clear and functional procedures and ensuring the correct application accordingly. Test specimens have become powerful elements in supporting many of these aspects. Within the committee for NDT in Civil Engineering (NDT-CE) of the German Society for Nondestructive Testing (DGZfP), the subcommittee on Quality Assurance (UA-QS) therefore addresses the design and the integration of test specimens in the quality assurance process. Depending on the specific purpose, the requirements on test specimens can vary significantly based on the defined simulated scenario. The most prominent purposes of test specimens might be seen in providing references for inspection systems in regard to function control, calibration and validation. Further aspects can be parametric studies, basic investigation of physical principles related to NDT or a simplified and therefore comprehensive demonstration of inspection concepts (e.g. for teaching purposes). The specific purpose of a test specimen dictates the requirements regarding its conception, including the exact design, the material or the fabrication accuracy and the conditioning. In the development of a general guideline by the UA-QS for application-specific procedures and their validation, the use of test specimens is addressed and specific concepts for the design of test specimens are made. This includes the analysis of the measurement process regarding any given application, deriving an adequate calibration approach for it and designing test specimens (calibration specimens) accordingly. Furthermore, it includes the validation of the procedure taking into account all conditions related to the specific application in the field. The validation requires a statistically sufficient number of trials. Thorough evaluation of each trial can only be established if the ground-truth is known. Therefore, test specimens providing a realistic but controlled simulation of the inspection problem are valuable and indispensable elements in the validation process. The requirement of being fully realistic will often not be possible to fulfill due to practical restrictions. Any aspect that cannot be included in the simulation realistically needs to be simulated conservatively. This again, requires a sufficient understanding of the inspection principle and technique to ensure conservativeness. Among other quality-assurance-related aspects, the UA-QS establishes concepts and guidelines regarding sound and efficient approaches for the specific purposes of test specimens. This subcommittee brings together representatives of different Groups along the entire value chain of NDT-CE, including researchers, practitioners, manufacturers and clients. They all work together in establishing a common understanding and level of quality assurance in the industry. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 39 EP - 48 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -