TY - JOUR A1 - Mech, A. A1 - Wohlleben, W. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Babick, F. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission’s Definition N2 - Identifying nanomaterials (NMs) according to European Union Legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy Approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission’s (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs. KW - Classification KW - Definition KW - Identification KW - Nanomaterials KW - Particle size KW - Regulation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510917 SN - 1613-6829 SP - 2002228-1 EP - 2002228-16 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Friedrich, C. M. A1 - Weigel, S. A1 - Marvin, H. A1 - Rauscher, H. A1 - Wohlleben, W. A1 - Babick, F. A1 - Löschner, K. A1 - Mech, A. A1 - Brüngel, R. A1 - Hodoroaba, Vasile-Dan A1 - Gilliland, D. A1 - Rasmussen, K. A1 - Ghanem, A. T1 - The NanoDefine Methods Manual N2 - This document is a collection of three JRC Technical Reports that together form the “NanoDefine Methods Manual”, which has been developed within the NanoDefine project ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’, funded by the European Union’s 7th Framework Programme, under grant agreement 604347. The overall goal of the NanoDefine project was to support the implementation of the European Commission Recommendation on the definition of nanomaterial (2011/696/EU). The project has developed an integrated empirical approach, which allows identifying a material as a nano- or not a nanomaterial according to the EC Recommendation. The NanoDefine Methods Manual consists of three parts: Part 1: The NanoDefiner Framework and Tools, which covers the NanoDefiner framework, general information on measurement methods and performance criteria, and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2: Evaluation of Methods, which discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3: Standard Operating Procedures (SOPs), which presents the 23 Standard Operating Procedures developed within the NanoDefine project. In this combined document, these three parts are included as stand-alone reports, each having its own abstract, table of contents, page, table and figure numbering, and references. KW - Nanomaterial KW - Particle size distribution KW - Nanoparticles KW - NanoDefine KW - Nanomaterial classification PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504250 SN - 978-92-76-12335-4 VL - JRC117501 SP - 1 EP - 451 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Wohlleben, W. A1 - Marvin, H. A1 - Weigel, S. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 1: The NanoDefiner Framework and Tools N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 1. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Nanoparticle size distribution KW - Nanomaterial classification KW - Framework KW - Tools PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503699 SN - 978-92-76-11950-0 SN - 1831-9424 SP - 1 EP - 89 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. T1 - The NanoDefine Methods Manual - Part 2: Evaluation of methods N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial', funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published a recommendation for a definition of the term 'nanomaterial', the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes1. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano- or not a nanomaterial according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all stakeholders (authorities, policy makers, commercial firms), - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the x50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 2. KW - Nanomaterial KW - Nanoparticles KW - NanoDefine KW - Particle size distribution KW - Nanomaterial classification PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503708 SN - 978-92-76-11953-1 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 133 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mech, A. A1 - Rauscher, H. A1 - Rasmussen, K. A1 - Babick, F. A1 - Hodoroaba, Vasile-Dan A1 - Ghanem, A. A1 - Wohlleben, W. A1 - Marvin, H. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Löschner, K. A1 - Gilliland, D. T1 - The NanoDefine Methods Manual - Part 3: Standard Operating Procedures (SOPs) N2 - The present series of reports, the NanoDefine Methods Manual, has been developed within the NanoDefine project 'Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial'1 funded by the European Union's 7th Framework Programme, under grant agreement 604347. In 2011 the European Commission (EC) published the recommendation (2011/696/EU) for a definition of the term 'nanomaterial'1, the EC NM Definition, as a reference to determine whether an unknown material can be considered as a 'nanomaterial' for regulatory purposes. One challenge is the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substances and in various products and matrices. The overall goal of NanoDefine was to support the implementation of the EC NM Definition. It can also support the implementation of any NM definition based on particle size. The project has developed an integrated approach, which allows identifying any material as a nano or non-nano material according to the EC NM Definition. NanoDefine explicitly supported the governance challenges associated with the implementation of legislation concerning nanomaterials by: - addressing the issues on availability of suitable measuring techniques, reference materials, validated methods, acceptable to all - developing an integrated and interdisciplinary approach and a close international co-operation and networking with academia, commercial firms and standardization bodies. Thus, the NanoDefine Methods Manual provides guidance on practical implementation of the EC NM Definition throughout the nanomaterial characterization process, and on the characterization techniques employed as well as their application range and limits. It assists the user in choosing the most appropriate measurement method(s) to identify any substance or mixture for a specific purpose, according to the EC NM Definition of a nanomaterial. The NanoDefine project also explored how to assess a material against the criteria of the definition through proxy solutions, i.e. by applying measurement techniques that indirectly determine the D50. Those findings were developed through empirically based scientific work and are included in Part 1 of this Manual. As they go beyond the text of the EC NM Definition, they may be used as practical approach to indicate whether a material is a nanomaterial or not, but keeping in mind that they should not be taken as recommendation for the implementation of the EC NM Definition in a regulatory context. The NanoDefine Methods Manual consists of the following three parts:  Part 1: The NanoDefiner Framework and Tools  Part 2: Evaluation of Methods  Part 3: Standard Operating Procedures (SOPs) Part 1 covers the NanoDefiner framework, general information on measurement methods and performance criteria and tools developed by NanoDefine such as a materials categorisation system, a decision support flow scheme and an e-tool. Part 2 discusses the outcome of the evaluation of the nanomaterials characterisation methods for measuring size. Part 3 presents the 23 Standard Operating Procedures developed within the NanoDefine project. The current document is part 3. KW - Nanomaterial KW - Nanoparticles KW - Particle size distribution KW - NanoDefine KW - Standard Operation Procedures KW - Nanomaterial classification KW - SOP PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503710 SN - 978-92-76-11955-5 SN - 1831-9424 VL - JRC117501 SP - 1 EP - 215 PB - Publications Office of the European Union CY - Luxembourg AN - OPUS4-50371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -