TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield JF - Angewandte Chemie - International Edition N2 - Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm−2) and by approximately a factor of 10 at low power densities (1 W cm−2). KW - Core shell structure KW - Upconversion KW - Non lienear processes KW - Nanoparticle KW - Quantum yield PY - 2018 DO - https://doi.org/10.1002/anie.201803083 VL - 57 IS - 28 SP - 8765 EP - 8769 PB - Wiley-VCH AN - OPUS4-45574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies JF - Springer N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 DO - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups JF - American Chemical Society N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry JF - ACS Nano N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - Aufwärtskonvertierende NaYF4:Yb,Er/NaYF4‐Kern/Schale‐Nanokristalle mit hoher Lumineszenzquantenausbeute JF - Angewandte Chemie N2 - Eine modifizierte Syntheseroute auf der Basis wasserfreier Seltenerdacetate wurde zur Synthese aufwärtskonvertierender Kern/Schale‐Nanokristalle mit mittleren Größen zwischen 15 bis 45 nm eingesetzt. Die nahezu monodispersen Partikel bestehen aus einem NaYF4:Yb,Er‐Kern, dotiert mit 18 % Yb3+ und 2 % Er3+, und einer inerten Schale aus NaYF4, wobei die Dicke der Schale dem jeweiligen Radius des Kernpartikels entspricht. Absolutmessungen der Photolumineszenz‐Quantenausbeuten bei verschiedenen Anregungsleistungsdichten zeigen, dass die Quantenausbeuten von 45 nm Kern/Schale‐Partikeln schon fast an die Quantenausbeute des mikrokristallinen aufwärtskonvertierenden Leuchtstoffs heranreichen. Kleinere Kern/Schale‐Partikel, die nach der gleichen Methode hergestellt wurden, zeigen nur eine moderate Abnahme der Quantenausbeute. Beispielsweise ist die Quantenausbeute von 15 nm großen Kern/Schale‐Partikeln bei hohen Leistungsdichten (100 W cm−2) nur um einen Faktor drei kleiner als die des mikrokristallinen Leuchtstoffpulvers und um ungefähr einen Faktor 10 kleiner bei niedrigen Leistungsdichten (1 W cm−2). KW - Nicht lineare Prozesse KW - Nanopartikel KW - Quantenausbeute PY - 2018 DO - https://doi.org/10.1002/ange.201803083 VL - 130 IS - 28 SP - 8901 EP - 8905 PB - Wiley VCH Verlag AN - OPUS4-45573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meijer, M. S. A1 - Rojas-Gutierrez, P. A. A1 - Busko, D. A1 - Howard, I. A. A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Richards, B. S. A1 - Turshatov, A. A1 - Capobianco, J. A. A1 - Bonnet, S. T1 - Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+,Tm3+ upconverting nanoparticles JF - Physical chemistry, chemical physics : PCCP N2 - The upconversion quantum yield (QY) is an essential parameter for the characterization of the optical performance of lanthanoid-doped upconverting nanoparticles (UCNPs). Despite its nonlinear dependence on excitation power density, it is typically reported only as a single number. Here, we present the first measurement of absolute upconversion quantum yields of the individual emission bands of blue light-emitting LiYF4:Yb3+,Tm3+ UCNPs in toluene. Reporting the quantum yields for the individual emission bands is required for assessing the usability of UCNPs in various applications that require upconverted light of different wavelengths, such as bioimaging, photocatalysis and phototherapy. Here, the reliability of the QY measurements is demonstrated by studying the same batch of UCNPs in three different research groups. The results show that whereas the total upconversion quantum yield of these UCNPs is quite high - typically 0.02 at a power density of 5 W/cm2 — most of the upconverted photon flux is emitted in the 794 nm upconversion band, while the blue emission band at 480 nm is very weak, with a much lower quantum yield of 6 times 10^5 at 5 W/cm2. Overall, although the total upconversion quantum yield of LiYF4:Yb3+,Tm3+ UCNPs seems satisfying, notably for NIR bioimaging, blue-light demanding phototherapy applications will require better-performing UCNPs with higher blue light upconversion quantum yields. KW - Core-shell nanoparticles KW - Lanthanide-doped nayf-4 KW - Near-infrared light KW - Upconverting nanoparticles KW - Photocatalytic activity KW - Nanocrystals KW - Photosensitizer PY - 2018 DO - https://doi.org/10.1039/c8cp03935f VL - 20 IS - 35 SP - 22556 EP - 22562 PB - Royal Society of Chemistry AN - OPUS4-46370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -