TY - JOUR A1 - Frei, J. A1 - Suwala, H. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Bestimmung der Rissanfälligkeit von hochfesten Stählen beim Widerstandspunktschweißen JF - Mechanical Testing N2 - Die stetig zunehmenden Anforderungen an Kraftstoffverbrauch, Schadstoffemission, sowie passive Sicherheit haben die Automobilindustrie vor Herausforderungen gestellt, die nur durch einen konsequenten Einsatz moderner hochfester Stahlwerkstoffe zu bewältigen sind. Obgleich eine generelle Eignung dieser Stähle für das Widerstandspunktschweißen (WPS) gegeben ist, kann es durch verschiedene externe Einflüsse im betrieblichen Umfeld zur Rissbildung in der Schweißverbindung kommen. Der Einfluss dieser Risse auf die mechanischen Eigenschaften ist derzeit nicht hinreichend genau erfasst, so dass häufig die Vorgabe einer rissfreien Schweißverbindung besteht. Die Kenntnis der Rissanfälligkeit der verarbeiteten Materialkombinationen sowie von ungünstigen Schweißparametern ist daher für viele Unternehmen von erheblicher wirtschaftlicher Bedeutung. Im Rahmen des FOSTA Projekts P921 „Entwicklung eines Verfahrens zur Bestimmung der Rissanfälligkeit von hochfesten Stählen beim Widerstandspunktschweißen“ wurde ein Ansatz zur Bestimmung der Rissanfälligkeit von WPS-Verbindungen hochfester Stähle entwickelt. Mittels einer hydraulischen Vorrichtung unter Zugbelastung wurden geschweißte, rissbehaftete Proben optisch ausgewertet. Das Verfahren ist geeignet, um ein Werkstoffranking bezüglich der Rissanfälligkeit beim Widerstandspunktschweißen für Werkstoffe aufzustellen. KW - Widerstandspunktschweißen KW - Werkstoffranking KW - Rissanfälligkeit KW - hochfeste Stähle KW - Liquid Metal Embrittlement KW - Lötrissigkeit PY - 2016 DO - https://doi.org/10.3139/120.110904 VL - 58 IS - 7-8 SP - 612 EP - 616 PB - Carl Hanser Verlag CY - München AN - OPUS4-37161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael A1 - Alexandrov, B. T. T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone JF - Welding in the World N2 - Dissimilar metal weld overlays of nickel base alloys on low alloy steel components are commonly used in the oil and gas, petro-chemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service environments and temperatures. Traditionally, weld overlays are produced using cold or hot wire gas tungsten arc welding (GTAW). Potential advantages of cold metal Transfer (CMT) welding, a low heat input gas metal arc welding process, over the conventional GTAW in production of weld overlays were evaluated. Metallurgical characterization was performed on CMT overlays of Alloy 625 filler metal on Grade 11 and Grade 22 steels. Significant grain refinement was found in the high temperature HAZ compared to the traditional coarse-grained HAZ in arc welding. Evidences of incomplete carbide dissolution, limited carbon diffusion, and incomplete transformation to austenite were also found. These phenomena were related to high heating and cooling rates and short dwell times of the high-temperature HAZ in austenitic state. Tempering effects in the steel HAZ were identified, showing a potential for development of CMT temperbead procedures. Based on the results of this study, the steel HAZ regions in CMT overlays were classified as high-temperature HAZ and intercritical HAZ. KW - Clad steels KW - Nickel alloys KW - Low alloy steels KW - GMA surfacing KW - DIP transfer KW - Coarse-grained heat-affected zone KW - Microstructure PY - 2016 DO - https://doi.org/10.1007/s40194-016-0306-z SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 3 SP - 459 EP - 473 PB - Springer CY - Heidelberg, Germany AN - OPUS4-36377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael ED - Rethmeier, Michael T1 - Einfach anwenderfreundlich - Numerische Simulation von Fügestellen JF - Futur N2 - Ob in der Automobilindustrie, beim Rohrleitungs- oder beim Kraftwerksbau – anspruchsvolle und hochwertige Fügeverbindungen entscheiden oft über die Qualität des Endproduktes. Um z. B. das Verzugsverhalten von Karosseriebauteilen vorab einschätzen zu können, setzen Hersteller auf die numerische Simulation der geschweißten Komponenten. Besondere Aufmerksamkeit gilt hier den Fügestellen. Da diese oft nur wenige Millimeter klein sind, kommen konventionelle Prüfverfahren wie der Zugversuch hier jedoch nicht ohne weiteres in Frage. Forscher des Fraunhofer IPK untersuchen deshalb eine alternative Methode, um die negativen Begleiterscheinungen des thermischen Schweißens im Vorfeld am PC zu analysieren und nötige Gegenmaßnahmen ableiten zu können. KW - Numerische Simulation PY - 2016 SN - 1438-1125 IS - 2 SP - 14 EP - 15 AN - OPUS4-38747 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meschut, G. A1 - Janzen, V. A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Frei, J. T1 - Charakterisierung des Bruch- und Festigkeits verhaltens von widerstandspunktgeschweißten Aluminiumverbindungen JF - Schweißen und Schneiden N2 - Die Reduktion des Fahrzeuggewichts ist ein wesentlicher Ansatz zur Ver-ringerung des Energie- und Ressourcenverbrauchs und damit zur Senkung der CO2-Emissionen im Automobilbau. In der Karosserieentwicklung kann der vermehrte Einsatz von Aluminiumwerkstoffen einen bedeutenden Beitrag dazu leisten. Im preissensitiven Umfeld des Karosseriebaus etabliert sich das bei Stahlanwendungen genutzte Widerstandspunktschweißen zunehmend auch für Aluminiumverbindungen. Verfahrensbedingte Herausforderungen, wie verkürzte Elektrodenstandzeiten und mangelnde Kenntnis über den Einfluss von Imperfektionen auf die Festigkeit, begrenzen dennoch die Weiterverbreitung des Verfahrens und stellen die Prozessrobustheit insgesamt in Frage. Im Rahmen des hier vorgestellten Forschungsvorhabens wurden das Auftreten verschiedener Brucharten experimentell untersucht und Prognosefunktionen zur Abschätzung der Tragfähigkeit von Widerstandspunktschweißverbindungen unter verschiedenen Belastungsfällen erstellt. Anschließend wurde der Einfluss von Oberflächenrissen und Rissen in der Schweißlinse auf die Scherzugfestigkeit sowohl experimentell als auch simulativ analysiert. KW - Aluminium KW - Widerstandspressschweißen KW - Rissbildung KW - Festigkeit KW - Werkstofffragen PY - 2017 UR - http://www.schweissenundschneiden.de/article/charakterisierung-des-bruch-und-festigkeitsverhaltens-von-widerstandspunktgeschweissten-aluminiumverbindungen/ VL - 69 IS - 3 SP - 126 EP - 133 PB - DVS Media GmbH AN - OPUS4-39577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. T. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part II: the transition zone JF - Welding in the World N2 - Dissimilar metal weld overlays (DMWOL) of nickel base alloys on low alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of dissimilar weld overlays. In order to evaluate the quality of these overlays regarding resistance against hydrogen-assisted cracking, their transition zone region is investigated in this part of the publication series. Metallurgical characterization, including energy-dispersive x-ray spectroscopy, is performed on Alloy 625/grade 22 steel overlays. The transition zone is characterized by a narrow planar growth zone and steep compositional gradients from the fusion boundary towards the weld metal. Evidence of low carbon contents in the planar growth zone, as well as for carbide precipitation in the cellular growth zone was found. The microstructure in the transition zone region of the fusion zone shows characteristics known to be suitable for good resistance against hydrogen embrittlement. KW - Low heat input Gma welding KW - Dissimilar metal weld overlays KW - Coarse grained heat affected zone KW - Grain size KW - Microstructure KW - Fusion zone, nickel alloys PY - 2018 DO - https://doi.org/10.1007/s40194-017-0539-5 VL - 62 IS - 2 SP - 317 EP - 324 PB - Springer CY - Heidelberg, Germany AN - OPUS4-44721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. ED - Alexandrov, B. T. ED - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility JF - Welding in the World N2 - Dissimilar metal weld overlays of nickel-base alloys on low-alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service Environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of such overlays. Parts I and II of this publication series described characteristics of the heat-affected zone and the transition zone region of alloy 625 on grade 22 steel overlays. These results indicate a good resistance against hydrogen-assisted cracking, which is being verified within this third part of the publication series. To determine the hydrogen-assisted cracking susceptibility, welded samples are tested using the delayed hydrogen-assisted cracking test. Fractography is performed using scanning electron microscopy along with energy dispersive spectroscopy. The results confirm the suitability and efficiency of low heat input gas metal arc welding for dissimilar weld overlays. Variation of the postweld heat treatment procedure bears potential for improvement in this respect. KW - Low heat input GMA welding KW - Dissimilar metal weld overlays KW - Coarse-grained heat-affected zone KW - Grain size KW - Microstructure KW - Fusion Zone KW - Nickel alloys PY - 2018 DO - https://doi.org/10.1007/s40194-018-0674-7 SN - 0043-2288 SN - 1878-6669 SP - 1 EP - 8 PB - Springer AN - OPUS4-47236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael T1 - Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding JF - Welding in the World N2 - Modern advanced high-strength steel sheets for automotive applications are mostly zinc coated for corrosion resistance. However, the presence of zinc can—besides its positive effects—increase the material’s susceptibility to liquid metal embrittlement (LME) during resistance spot welding (RSW). Zinc and its eutectics are, due to their low melting point, present in liquid state during the welding process. This fact can, in combination with other factors like tensile strains or stresses, lead to the formation of brittle, intergranular cracks in the weld, and heat-affected zone. This phenomenon is commonly called liquid metal embrittlement. In order to understand the process from a practical perspective, one must learn what factors facilitate it. In this study, industry-relevant parameters are investigated regarding their influence on the occurrence of LME, embodied by the formation of surface cracks. It was found that electrode wear has less of an influence on the cracking susceptibility than welding current or tensile stresses. Finite element analysis is believed to provide a powerful tool in order to gain insights on the formation process. Modeling of the process shows promising initial results, revealing the underlying local stress and strain fields, unmeasurable with common techniques. KW - Resistance spot welding KW - High-strength steel sheets KW - Surface cracks KW - Liquid metal embrittlement KW - Zinc PY - 2018 DO - https://doi.org/10.1007/s40194-018-0619-1 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1031 EP - 1037 PB - Springer AN - OPUS4-45775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility JF - Welding in the World N2 - Dissimilar metal weld overlays of nickel-base alloys on low-alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service Environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of such overlays. Parts I and II of this publication series described characteristics of the heat-affected zone and the transition zone region of alloy 625 on grade 22 steel overlays. These results indicate a good resistance against hydrogen-assisted cracking, which is being verified within this third part of the publication series. To determine the hydrogen-assisted cracking susceptibility, welded samples are tested using the delayed hydrogen-assisted cracking test. Fractography is performed using scanning electron microscopy along with energy dispersive spectroscopy. The results confirm the suitability and efficiency of low heat input gas metal arc welding for dissimilar weld overlays. Variation of the postweld heat treatment procedure bears potential for improvement in this respect. KW - Low heat input GMA welding KW - Dissimilar metal weld overlays KW - Coarse-grained heat-affected zone KW - Grain size KW - Microstructure KW - Fusion zone KW - Nickel alloys PY - 2019 DO - https://doi.org/10.1007/s40194-018-0674-7 VL - 63 IS - 3 SP - 591 EP - 598 PB - Springer AN - OPUS4-48096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Frei, J. A1 - Rethmeier, Michael T1 - Prevention of liquid metal embrittlement cracks JF - Science and technology of welding and joining N2 - Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME)mayoccur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Electrode geometry PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1693731 VL - 25 IS - 4 SP - 303 EP - 310 PB - Taylor & Francis AN - OPUS4-49833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Böhne, Ch. A1 - Meschut, G. T1 - Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation JF - Science and technology of welding and joining N2 - A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations. KW - RSW KW - LME KW - Advanced high strength steel KW - Zinc coated steel KW - Testing method KW - Dual phase steel KW - Cracking KW - Electro-thermomechnical model PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1582203 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 7 SP - 624 EP - 633 PB - Taylor & Francis AN - OPUS4-47747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -