TY - CONF A1 - Fontana, Patrick A1 - Miccoli, Lorenzo A1 - Kocadag, R. A1 - Silva, N. A1 - Qvaesching, D. A1 - Kreft, O. A1 - Cederqvist, Ch. ED - Fehling, E. ED - Middendorf, B. ED - Thiemicke, J. T1 - Composite UHPC facade elements with functional surfaces T2 - Ultra-High Performance Concrete and High Performance Construction Materials N2 - This paper presents an innovative way to combine an external ultra-high performance concrete (UHPC) supporting layer with an insulation layer of autoclaved aerated concrete (AAC) or cellular lightweight concrete (CLC) to create light-weight façade elements, which are improved in functionality and in energy efficiency. The durability of the façade elements is improved by developing UHPC with self-cleaning properties. One approach is based on the photocatalytic activation of the external UHPC shell by incorporation of TiO2 particles. The second approach consists of the modification of the UHPC surface by micro structuring in combination with the application of water-repellent agents to create durable super hydrophobicity. The current results obtained from laboratory testing are promising and demonstrate the feasibility of the approaches. T2 - HiPerMat 2016 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials CY - Kassel, Germany DA - 09.03.2016 KW - Composite UHPC elements KW - photocatalysis KW - super hydrophobicity KW - self-cleaning KW - autoclaved aerated concrete KW - cellular lightweight concrete PY - 2016 SN - 978-3-7376-0094-1 VL - 27 SP - 159 EP - 160 PB - kassel university press GmbH CY - Kassel AN - OPUS4-36566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Silva, N. A1 - Klinge, A. A1 - Cederqvist, C. A1 - Kreft, O. A1 - Qvaeschning, D. A1 - Sjöström, C. T1 - Composite UHPC-AAC/CLC facade elements with modified interior plaster for new buildings and refurbishment T2 - ICAE 2015 - 7th International congress on architectural envelopes (Proceedings) N2 - The awareness of the environmental impact of the building sector is increasing. Steel reinforced concrete is the most commonly used construction material, though with a high-embodied energy and carbon footprint. Large environmental gains may arise if an alternative to steel reinforced concrete is developed. In this context, ultra-high performance concrete (UHPC) materials are shown to be promising alternatives with advantages such as lower embodied energy and reduced environmental impact. Predictions suggest that UHPC composite elements for building envelopes could have other benefits such as an increased service life, optimised use of building area due to thinner elements and minimised maintenance due to the absence of reinforcement or use of non-corrosive reinforcing materials such as carbon fibres. In the framework of the H-HOUSE project funded by the European Commission, composite elements are developed. The aim is to create facade panels combining an autoclaved aerated concrete or cellular lightweight concrete insulation layer with an external UHPC supporting layer. To enhance occupant comfort and health, hygroscopic materials that are capable to buffer indoor air humidity shall be applied to the inside of such elements. Indoor air humidity levels are expected to be more stable, which shall subsequently improve the indoor climate and minimise potential decay to the construction. T2 - ICAE 2015 - 7th International congress on architectural envelopes CY - San Sebastián, Spain DA - 27.05.2015 KW - Composite panels KW - Ultra-high performance concrete (UHPC) KW - Autoclaved aerated concrete (AAC) KW - Cellular lightweight concrete ^ PY - 2015 SN - 978-84-88734-10-5 SP - 297 EP - 305 AN - OPUS4-33572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Silva, N. A1 - Klinge, A. A1 - Cederqvist, C. A1 - Kreft, O. A1 - Qvaeschning, D. A1 - Sjöström, C. T1 - Composite UHPC-AAC/CLC facade elements with modified interior plaster for new buildings and refurbishment. Materials and production technology JF - Journal of Facade Design and Engineering N2 - The awareness of the environmental impact of the building sector is increasing. Steel reinforced concrete is the most commonly used construction material, though with a high-embodied energy and carbon footprint. Large environmental gains may arise if an alternative to steel reinforced concrete is developed. In this context, ultra-high performance concrete (UHPC) materials are shown to be promising alternatives with advantages such as lower embodied energy and reduced environmental impact. Predictions suggest that UHPC composite elements for building envelopes could have other benefits such as an increased service life, optimised use of building area due to thinner elements and minimised maintenance due to the absence of reinforcement or use of non-corrosive reinforcing materials such as carbon fibres. In the framework of the H-HOUSE project funded by the European Commission, composite elements are developed. The aim is to create facade panels combining an autoclaved aerated concrete or cellular lightweight concrete insulation layer with an external UHPC supporting layer. To enhance occupant comfort and health, hygroscopic materials that are capable to buffer indoor air humidity shall be applied to the inside of such elements. Indoor air humidity levels are expected to be more stable, which shall subsequently improve the indoor climate and minimise potential decay to the construction. KW - Composite panels KW - Ultra-high performance concrete (UHPC) KW - Autoclaved aerated concrete (AAC) KW - Cellular lightweight concrete (CLC) KW - Aerogel KW - Modified earth plaster PY - 2015 DO - https://doi.org/10.3233/FDE-150029 SN - 2214-302X VL - 3 IS - 1 SP - 91 EP - 102 PB - IOS Press AN - OPUS4-33605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Kreft, O. A1 - Pietruszka, B. A1 - Lukaszewska, A. A1 - Klinge, A. ED - De Schutter, G. ED - De Belie, N. ED - Janssens, A. ED - Van Den Bossche, N. T1 - Design of UHPC-AAC light-weight composite facade elements for refurbishment T2 - Proceedings of XIV DBMC - 14th International Conference on Durability of Building Materials and Components N2 - The aim of this study was to develop a lightweight composite façade element for refurbishment of existing façades. It was crucial to minimize the thermal bridges and to undercut the thermal requirement of the system existing façade new element. The awareness of the environmental impact of the building sector is increasing. In this context, ultra-high performance concrete (UHPC) materials are shown to be promising alternatives with advantages such as lower embodied energy and reduced environmental impact. Predictions suggest that UHPC composite elements for building envelopes could have other benefits such as an increased service life, optimized use of building area due to thinner elements and minimized maintenance due to the absence of reinforcement or use of non-corrosive reinforcing materials such as carbon fibers. In this framework, composite elements have been developed combining an autoclaved aerated concrete insulation layer with an external UHPC supporting layer. The results show that the lightweight composite element has a good performance in term of thermal transmittance and minimization of thermal bridges. T2 - XIV DBMC - 14th International Conference on Durability of Building Materials and Components CY - Gent, Belgium DA - 29.05.2017 KW - Composite panels KW - Ultra-high performance concrete KW - Autoclaved aerated concrete KW - Hygrothermal behaviour KW - Production technology PY - 2017 SN - 978-2-35158-159-9 VL - PRO 107 SP - 1 EP - 10 PB - RILEM Publications S.A.R.L. AN - OPUS4-40498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -