TY - JOUR A1 - Höhse, Marek A1 - Mory, D. A1 - Florek, S. A1 - Weritz, Friederike A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis N2 - Raman and laser-induced breakdown spectroscopy is integrated into a single system for molecular and elemental microanalyses. Both analyses are performed on the same ~ 0.002 mm² sample spot allowing the assessment of sample heterogeneity on a micrometric scale through mapping and scanning. The core of the spectrometer system is a novel high resolution dual arm Echelle spectrograph utilized for both techniques. In contrast to scanning Raman spectroscopy systems, the Echelle-Raman spectrograph provides a high resolution spectrum in a broad spectral range of 200-6000 cm- 1 without moving the dispersive element. The system displays comparable or better sensitivity and spectral resolution in comparison to a state-of-the-art scanning Raman microscope and allows short analysis times for both Raman and laser induced breakdown spectroscopy. The laser-induced breakdown spectroscopy performance of the system is characterized by ppm detection limits, high spectral resolving power (15,000), and broad spectral range (290-945 nm). The capability of the system is demonstrated with the mapping of heterogeneous mineral samples and layer by layer analysis of pigments revealing the advantages of combining the techniques in a single unified set-up. KW - LIBS KW - Raman KW - Echelle KW - Laser-induced breakdown spectroscopy KW - Hyphenated technique PY - 2009 U6 - https://doi.org/10.1016/j.sab.2009.09.004 SN - 0584-8547 SN - 0038-6987 VL - 64 IS - 11-12 SP - 1219 EP - 1227 PB - Elsevier CY - Amsterdam AN - OPUS4-20493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Maike A1 - Gornushkin, Igor B. A1 - Florek, S. A1 - Mory, D. A1 - Panne, Ulrich T1 - Approach to Detection in Laser-Induced Breakdown Spectroscopy N2 - Gated detection with intensified detectors, e.g., ICCDs, is today the accepted approach for detection of plasma emission in laser-induced breakdown spectroscopy (LIBS). However, these systems are more cost-intensive and less robust than nonintensified CCDs. The objective of this paper is to compare, both theoretically and experimentally, the performance of an intensified (ICCD) and nonintensified (CCD) detectors for detection of plasma emission in LIBS. The CCD is used in combination with a mechanical chopper, which blocks the early continuum radiation from the plasma. The detectors are attached sequentially to an echelle spectrometer under the same experimental conditions. The laser plasma is induced on a series of steel samples under atmospheric conditions. Our results indicate that there is no substantial difference in the performance of the CCD and ICCD. Signal-to-noise ratios and limits of detection achieved with the CCD for Si, Ni, Cr, Mo, Cu, and V in steel are comparable or even better than those obtained with the ICCD. This result is further confirmed by simulation of the plasma emission signal and the corresponding response of the detectors in the limit of quantum (photon) noise. KW - LIBS KW - Detektorvergleich KW - ICCD CCD PY - 2007 U6 - https://doi.org/10.1021/ac0621470 SN - 0003-2700 SN - 1520-6882 VL - 79 IS - 12 SP - 4419 EP - 4426 PB - American Chemical Society CY - Washington, DC AN - OPUS4-15044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -