TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers N2 - Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements. KW - Boron isotopes KW - Isotope ratios KW - Boron monohydride KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace KW - Memory effect KW - HR-CS-MAS PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302537 U6 - https://doi.org/10.1016/j.sab.2017.08.012 SN - 0584-8547 VL - 136 SP - 116 EP - 122 PB - Elsevier CY - Amsterdam, The Netherlands AN - OPUS4-42071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, M. D. A1 - Becker-Ross, H. A1 - Florek, S. A1 - Abad Andrade, Carlos Enrique A1 - Okruss, M. T1 - Investigation of high-resolution absorption spectra of diatomic sulfides of group 14 elements in graphite furnace and the comparison of their performance for sulfur determination N2 - For the purpose of finding suitable molecules applicable to sulfur determination and to compare their analytical sensitivity systematically, high-resolution overview molecular absorption spectra of sulfides of group 14 elements produced in a graphite furnace were investigated. To that end a modular simultaneous echelle spectrograph (MOSES) was used, which allows recording sub-ranges of spectra out of a total wavelength range from 190 nm to 735 nm. The combined overview spectra show a complex structure with many vibrational bands, each of them consisting of a multitude of sharp rotational lines. The absorption of rotational lines of SiS (282.910 nm), GeS (295.209 nm), SnS (271.578 nm), and PbS (335.085 nm) has been analyzed for optimizing the particular experimental conditions regarding to the sulfur determination. Using the commercial CS AAS instrument contrAA 600 under optimized conditions such as the temperature program, the modification of the platform with Zr and the use of chemical modifiers, the achieved characteristic masses for sulfur are 12 ng (CS), 15.7 ng (SiS), 9.4 ng (GeS), 20 ng (SnS), and 220 ng (PbS). The first four sulfides provide an analytical sensitivity with roughly the same level, but the GeS molecule seems to be the best one with respect to analytical sensitivity and flexibility in molecular formation control. The PbS molecule provides the lowest analytical sensitivity, and together with its low bond strength it is not recommended for sulfur determination. KW - Sulfur determination KW - Sulfides of group 14 elements KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302215 U6 - https://doi.org/10.1016/j.sab.2017.06.012 SN - 0584-8547 VL - 135 SP - 15 EP - 21 PB - Elsevier B.V. CY - Amsterdam, The Netherlands AN - OPUS4-40771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -