TY - CONF A1 - Walther, Wolfgang A1 - Becker, Roland A1 - Nehls, Irene A1 - Lehmann, Andreas A1 - Redlich, Christel A1 - Flemig, Sabine A1 - Dorgerloh, Ute A1 - Win, Tin A1 - Buge, Hans-Gerhard T1 - Pentchlorophenol (PCP) in Soil - Certified Reference Materials for Environmental Analysis T2 - Analytica Conference 2002 CY - Munich, Germany DA - 2002-04-23 PY - 2002 SP - 1(?) AN - OPUS4-1389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hornemann, A. A1 - Drescher, Daniela A1 - Flemig, Sabine A1 - Kneipp, Janina T1 - Intracellular SERS hybrid probes using BSA-reporter conjugates N2 - Surface-enhanced Raman scattering (SERS) hybrid probes are characterized by the typical spectrum of a reporter molecule. In addition, they deliver information from their biological environment. Here, we report SERS hybrid probes generated by conjugating different reporter molecules to bovine serum albumin (BSA) and using gold nanoparticles as plasmonic core. Advantages of the BSA-conjugate hybrid nanoprobes over other SERS nanoprobes are a high biocompatibility, stabilization of the gold nanoparticles in the biological environment, stable reporter signals, and easy preparation. The coupling efficiencies of the BSA–reporter conjugates were determined by MALDI-TOF-MS. The conjugates' characteristic SERS spectra differ from the spectra of unbound reporter molecules. This is a consequence of the covalent coupling, which leads to altered SERS enhancement and changes in the chemical structures of the reporter and of BSA. The application of the BSA–reporter conjugate hybrid probes in 3T3 cells, including duplex imaging, is demonstrated. Hierarchical cluster analysis and principal components analysis were applied for multivariate imaging using the SERS signatures of the incorporated SERS hybrid nanoprobes along with the spectral information from biomolecules in endosomal structures of cells. The results suggest more successful applications of the SERS hybrid probes in cellular imaging and other unordered high-density bioanalytical sensing. KW - Bovine serum albumin KW - Nanosensor KW - SERS multiplexing KW - 3T3 cells KW - Gold nanoparticles KW - Hybrid nanoprobe KW - Rinderserumalbumin KW - Albumin KW - SERS KW - Konjugate KW - Conjugates KW - Cell KW - Zelle PY - 2013 U6 - https://doi.org/10.1007/s00216-013-7054-3 SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 19 SP - 6209 EP - 6222 PB - Springer CY - Berlin AN - OPUS4-29819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Hülagü, Deniz A1 - Bennet, Francesca A1 - Carl, Peter A1 - Flemig, Sabine A1 - Schmid, Thomas A1 - Schenk, J. A. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf T1 - Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’- Tetramethylbenzidine in Amperometric Assays N2 - Electrochemical methods offer great promise in meeting the demand for user-friendly on-site devices for Monitoring important parameters. The food industry often runs own lab procedures, for example, for mycotoxin analysis, but it is a major goal to simplify analysis, linking analytical methods with smart technologies. Enzyme-linked immunosorbent assays, with photometric detection of 3,3’,5,5’-tetramethylbenzidine (TMB),form a good basis for sensitive detection. To provide a straightforward approach for the miniaturization of the detectionstep, we have studied the pitfalls of the electrochemical TMB detection. By cyclic voltammetry it was found that the TMB electrochemistry is strongly dependent on the pH and the electrode material. A stable electrode response to TMB could be achieved at pH 1 on gold electrodes. We created a smartphonebased, electrochemical, immunomagnetic assay for the detection of ochratoxin A in real samples, providing a solid basis forsensing of further analytes. KW - Ochratoxin A KW - Amperometry KW - Cyclic voltammetry KW - Electrochemistry KW - Immunoassay PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530421 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 8 IS - 13 SP - 2597 EP - 2606 AN - OPUS4-53042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - Sulfamethoxazole KW - ELISA KW - LC-MS/MS PY - 2016 U6 - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhne, Maren A1 - Dippong, Martin A1 - Flemig, Sabine A1 - Hoffmann, Katrin A1 - Petsch, K. A1 - Schenk, J.A. A1 - Kunte, Hans-Jörg A1 - Schneider, Rudolf T1 - Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA N2 - A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity. KW - Immunization KW - Hapten KW - Monoclonal antibodies KW - Hybridoma KW - Flow cytometry KW - ELISA KW - Estradiol KW - Estrone KW - Digoxigenin KW - Zearalenone KW - Aflatoxin KW - CLSM PY - 2014 U6 - https://doi.org/10.1016/j.jim.2014.07.004 SN - 0022-1759 SN - 1872-7905 VL - 413 SP - 45 EP - 56 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 U6 - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Serrano Oliver, Ana A1 - Baumgart, S. A1 - Bremser, Wolfram A1 - Flemig, Sabine A1 - Wittke, D. A1 - Grützkau, A. A1 - Luch, A. A1 - Haase, A. A1 - Jakubowski, Norbert T1 - Quantification of silver nanoparticles taken up by single cells using inductively coupled plasma mass spectrometry in the single cell measurement mode N2 - The impact of nanoparticles, NPs, at the single cell level has become a major field of toxicological research and different analytical methodologies are being investigated to obtain biological and toxicological information to better understand the mechanisms of cell–NP interactions. Here, inductively coupled plasma mass spectrometry in the single cell measurement mode (SC-ICP-MS) is proposed to study the uptake of silver NPs, AgNPs, with a diameter of 50 nm by human THP-1 monocytes in a proof-ofprinciple experiment. The main operating parameters of SC-ICP-MS have been optimized and applied for subsequent quantitative analysis of AgNPs to determine the number of particles in individual cells using AgNP suspensions for calibration. THP-1 cells were incubated with AgNP suspensions with concentrations of 0.1 and 1 µg/mL for 4 and 24 hours. The results reveal that the AgNP uptake by THP-1 monocytes is minimal at the lower dose of 0.1 µg/mL (roughly 1 AgNP per cell was determined), whereas a large cell-to-cell variance dependent on the exposure time is observed for a 10 times higher concentration (roughly 7 AgNPs per cell). The method was further applied to monitor the AgNP uptake by THP-1 cells differentiated macrophages incubated at the same AgNP concentration levels and exposure times demonstrating a much higher AgNP uptake (roughly from 9 to 45 AgNPs per cell) that was dependent on exposure concentration and remained constant over time. The results have been compared and validated by sample digestion followed by ICP-MS analysis as well as with other alternative promising techniques providing single cell analysis. KW - Silbernanopartikel KW - ICP-MS KW - Einzelzellanalyse PY - 2018 U6 - https://doi.org/10.1039/C7JA00395A SN - 0267-9477 VL - 33 IS - 7 SP - 1256 EP - 1263 PB - Royal Society of Chemistry CY - London AN - OPUS4-45473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohsin, G. F. A1 - Schmitt, F.-J. A1 - Kanzler, C. A1 - Epping, J. D. A1 - Flemig, Sabine A1 - Hornemann, A. T1 - Structural characterization of melanoidin formed from D-glucose and L-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS N2 - The aim of this study was to identify specific chemical bonds and characteristic structures in melanoidins formed from D-glucose and L-alanine between 130 and 200 °C. The results might be used to control the type and amount of melanoidin produced during food processing. For this purpose, complementary techniques, such as FTIR, NMR, EPR, and MALDI-ToF, were employed. At 160 °C color, solubility and UV/Vis absorption change characteristically and consequently, structural transformations could be observed in FTIR and NMR spectra. For example, sharp signals of N-H, C-N, and C-H oscillations in the L-alanine spectrum are prone to inhomogeneous broadening in melanoidins prepared above 150 °C. These changes are caused due to formation of heterogeneous macromolecular structures and occur during condensation reactions that lead to an increasing loss of water from the melanoidins with increasing temperatures. Additionally, MALDI-ToF-MS indicates the polymerization of glyoxal/glyoxylic acid and EPR shows the formation of radical structures. KW - MALDI-ToF-MS KW - Melanoidine KW - Konjugate KW - Lebensmittel KW - MALDI-ToF-MS KW - L-alanine KW - D-glucose KW - Maillard reaction KW - FTIR spectroscopy KW - EPR spectroscopy KW - Melanoidin KW - NMR spectroscopy PY - 2018 U6 - https://doi.org/10.1016/j.foodchem.2017.11.115 SN - 0308-8146 VL - 245 SP - 761 EP - 767 PB - Elsevier Science CY - Amsterdam, NL AN - OPUS4-44018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hornemann, A. A1 - Eichert, D. A1 - Flemig, Sabine A1 - Ulm, G. A1 - Beckhoff, B. T1 - Qualifying label components for effective biosensing using advanced high-throughput SEIRA methodology N2 - The need for technological progress in bio-diagnostic assays of high complexity requires both fundamental research and constructing efforts on nano-scaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. Nanoparticle induced sensitivity enhancement and its application related to multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are well suitable for these purposes. The potential of diverse fluorophore–antibody conjugates, being chemisorbed onto low-cost gold nanoparticulate SEIRA substrates, has been explored with respect to their spectral discriminability. These novel biolabels deliver molecular SEIRA fingerprints that have been successfully analyzed by both uni- and multivariate analyzing tools, to discriminate their multiplexing capabilities. We show that this robust spectral encoding via SEIRA fingerprints opens up new opportunities for a fast, reliable and multiplexed high-end screening in biodiagnostics. KW - SEIRA methodology KW - bio-diagnostic KW - nanotechnology PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351389 SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 14 SP - 9471 EP - 9479 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-35138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arakawa, Akihiro A1 - Jakubowski, Norbert A1 - Koellensperger, G. A1 - Theiner, S. A1 - Schweikert, A. A1 - Flemig, Sabine A1 - Iwahata, D. A1 - Traub, Heike A1 - Hirata, T. T1 - Quantitative Imaging of Silver Nanoparticles and Essential Elements in Thin Sections of Fibroblast Multicellular Spheroids by High Resolution Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry N2 - We applied high resolution laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS) with cellular spatial resolution for bioimaging of nanoparticles uptaken by fibroblast multicellular spheroids (MCS). This was used to quantitatively investigate interactions of silver nanoparticles (Ag NPs) and the distributions of intrinsic minerals and biologically relevant elements within thin sections of a fibroblast MCS as a three-dimensional in vitro tissue model. We designed matrix-matched calibration standards for this purpose and printed them using a noncontact piezo-driven array spotter with a Ag NP suspension and multielement standards. The limits of detection for Ag, Mg, P, K, Mn, Fe, Co, Cu, and Zn were at the femtogram (fg) level, which is sufficient to investigate intrinsic minerals in thin MCS sections (20 μm thick). After incubation for 48 h, Ag NPs were enriched in the outer rim of the MCS but not detected in the core. The localization of Ag NPs was inhomogeneous in the outer rim, and they were colocalized with a single-cell-like structure visualized by Fe distribution (pixel size of elemental images: 5 × 0.5 μm). The quantitative value for the total mass of Ag NPs in a thin section by the present method agreed with that obtained by ICP-sector field (SF)-MS with a liquid mode after acid digestion. KW - Laser ablation KW - ICP-MS KW - Imaging KW - Nanoparticle KW - Cell KW - Spheroid PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.9b02239 U6 - https://doi.org/10.1021/acs.analchem.9b02239 SN - 0003-2700 VL - 91 IS - 15 SP - 10197 EP - 10203 PB - American Chemical Society, ACS Publications CY - Washington D.C. AN - OPUS4-48719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -