TY - JOUR A1 - Polte, Jörg A1 - Herder, Martin A1 - Erler, Robert A1 - Rolf, Simone A1 - Fischer, A. A1 - Würth, Christian A1 - Thünemann, Andreas A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Mechanistic insights into seeded growth processes of gold nanoparticles N2 - A facile approach for the synthesis of monodisperse gold nanoparticles with radii in the range of 7 to 20 nm is presented. Starting from monodisperse seeds with radii of 7 nm, produced in the first step, the addition of a defined amount of additional precursor material permits distinct size regulation and the realization of predicted nanoparticle sizes. These information were derived from ex- and in situ investigations by comprehensive small angle X-ray scattering (SAXS), X-ray absorption near edge structure (XANES) and UV-Vis data to obtain information on the physicochemical mechanisms. The obtained mechanisms can be transferred to other seeded growth processes. Compared to similar approaches, the presented synthesis route circumvents the use of different reducing or stabilizing agents. The size of resulting nanoparticles can be varied over a large size range presented for the first time without a measurable change in the shape, polydispersity or surface chemistry. Thus, the resulting nanoparticles are ideal candidates for size dependence investigations. KW - Gold nanoparticles KW - SAXS KW - XANES KW - Growth mechanism PY - 2010 DO - https://doi.org/10.1039/c0nr00541j SN - 2040-3364 SN - 2040-3372 VL - 2 IS - 11 SP - 2463 EP - 2469 PB - RSC Publ. CY - Cambridge AN - OPUS4-22346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pinto, H. A1 - Pyzalla, A.R. A1 - Büscher, R. A1 - Fischer, A. A1 - Aßmus, Kristin A1 - Hübner, Wolfgang T1 - The effect of hydrogen on the deterioration of austenitic steels during wear at cryogenic temperature N2 - Hydrogen represents an important alternative to fossil fuels. Hydrogen storage is possible as a gas, at room temperature (RT) at about 20 MPa pressure, and in a liquefied form, at cryogenic temperatures of about 20 K. The latter form is particularly attractive due to the possibility of stocking a large quantity of hydrogen within a small volume. In moving parts (e.g. of transport vehicles) cryogenic temperature and the presence of hydrogen strongly enhance wear processes and subsequently component failure. The present work deals with the deformation behaviour and the microstructural deterioration of austenitic CrNi- and CrMn high nitrogen-steels during friction in liquid hydrogen at 20 K. The modified microstructure within the wear scar is studied by scanning electron microscopy and X-ray diffraction methods. Diffraction studies of wear scars reveal the importance of twinning during deformation at 20 K. This increase of twinning can be attributed to a hydrogen-induced reduction of stacking fault energy (SFE) in the austenitic steels. Interactions between twin boundaries and planar dislocation structures along with locally increased stresses led to the formation of extensive crack networks. The amount of hydrogen-induced surface cracks depends on the alloy composition and is not necessarily correlated to the wear resistance of the austenitic steels. KW - Austenitic steel KW - Stacking fault energy KW - Hydrogen KW - Wear KW - Cryotechnology PY - 2005 DO - https://doi.org/10.1016/j.wear.2005.02.057 SN - 0043-1648 VL - 259 IS - 1-6 SP - 424 EP - 431 PB - Elsevier CY - Amsterdam AN - OPUS4-7692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pyzalla, A. A1 - Pinto, H. A1 - Wild, E. A1 - Poeste, T. A1 - Bohne, C. A1 - Reimers, W. A1 - Aßmus, Kristin A1 - Hübner, Wolfgang A1 - Fischer, A. ED - Bartz, Wilfried J. T1 - Mechanical Stress in Tribo-Layers T2 - 14th International Colloquium Tribology "Tribology and Lubrication Engineering" CY - Stuttgart, Deutschland DA - 2004-01-13 PY - 2004 SN - 3-924813-54-X VL - I SP - 85 EP - 89 PB - Techn. Akad. Esslingen CY - Ostfildern AN - OPUS4-3144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schymura, M. A1 - Stegemann, Robert A1 - Fischer, A. T1 - Crack propagation behavior of solution annealed austenitic high interstitial steels N2 - Austenitic stainless steels provide a beneficial combination of chemical and mechanical properties and have been used in a wide field of applications for over 100 years. Further improvement of the chemical and mechanical properties was achieved by alloying nitrogen. But the solubility of N within the melt is limited and can be increased in substituting Ni by Mn and melting under increased pressure. In order to avoid melting under pressure and decrease production costs, a part of N can also be substituted by C. This leads to austenitic high interstitial steels (AHIS). Within the solution annealed state strength and ductility of AHIS is comparable or even higher of those of AHNS and can be further improved by cold working. Unfortunately the endurance limit does not follow this trend as it is known from cold-worked austenitic CrNi steels. This is due to the differences of the slip behavior which is governed by the stacking fault energy as well as other near field effects. Construction components operating under cyclic loads over long periods of time cannot be considered being free of voids or even cracks. Thus the crack propagation behavior is of strong interest as well. This contribution presents the tensile, fatigue, crack propagation and fracture toughness properties of AHNS and AHIS in comparison to those of CrNi-steels. The differences are discussed in relation to microstructural characteristic as well as their alterations under cyclic loading. KW - Austenitic high interstitial steel KW - Fatigue KW - Stable crack propagation KW - Planar slip PY - 2015 DO - https://doi.org/10.1016/j.ijfatigue.2015.04.014 SN - 0142-1123 VL - 79 SP - 25 EP - 35 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Fischer, A. A1 - Chuenchom, L. A1 - Polte, Jörg A1 - Emmerling, Franziska A1 - Smarsly, B.M. A1 - Kraehnert, R. T1 - New triblock copolymer templates, PEO-PB-PEO, for the synthesis of titania films with controlles mesopore size, wall thickness, and bimodal porosity N2 - The synthesis and properties of a series of new structure-directing triblock copolymers with PEO-PB-PEO structure (PEO = poly(ethylene oxide) and PB = polybutadiene) and their application as superior pore-templates for the preparation of mesoporous titania coatings are reported. Starting from either TiCl4 or from preformed TiO2 nanocrystalline building blocks, mesoporous crystalline titanium oxide films with a significant degree of mesoscopic ordered pores are derived, and the pore size can be controlled by the molecular mass of the template polymer. Moreover, the triblock copolymers form stable micelles already at very low concentration, i.e., prior to solvent evaporation during the evaporation-induced self-assembly process (EISA). Consequently, the thickness of pore walls can be controlled independently of pore size by changing the polymer-to-precursor ratio. Thus, unprecedented control of wall thickness in the structure of mesoporous oxide coatings is achieved. In addition, the micelle formation of the new template polymers is sufficiently distinct from that of typical commercial PPO-PEO-PPO polymers (Pluronics; PPO = poly(propylene oxide)), so that a combination of both polymers facilitates bimodal porosity via dual micelle templating. KW - Mesoporous materials KW - Titanium oxide films KW - Anatase nanoparticles KW - PEO-PB-PEO KW - Dual templating PY - 2012 DO - https://doi.org/10.1002/smll.201101520 SN - 1613-6810 SN - 1613-6829 VL - 8 IS - 2 SP - 298 EP - 309 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Podshivalov, L. A1 - Wirth, Cynthia A1 - Zocca, Andrea A1 - Günster, Jens A1 - Bar-Yoseph, P. A1 - Fischer, A. T1 - Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds N2 - Advancements in the fields of biocompatible materials, manufacturing processes, computational methods and medicine have led to the emergence of a new field: micro-scale scaffolds for bone replacement and regeneration. Yet most such scaffolds produced today are characterized by very basic geometry, and their microstructure differs greatly from that of the actual tissue they are intended to replace. In this paper, we propose a novel approach for generating micro-scale scaffolds based on processing actual micro-CT images and then reconstructing a highly accurate geometrical model. This model is manufactured by means of a state-of-the-art 3D additive manufacturing process from biocompatible materials. At the micro-scale level, these scaffolds are very similar to the original tissue, thus interfacing better with the surrounding tissue and facilitating more efficient rehabilitation for the patient. Moreover, the approach facilitates the design and manufacture of patient-specific scaffolds which can copy patients’ exact structural and mechanical characteristics, taking into account their physical condition and medical history. By means of multi-resolution volumetric modeling methods, scaffold porosity can also be adapted according to specific mechanical requirements. The process of designing and manufacturing micro-scale scaffolds involves five major stages: (a) building a volumetric multi-resolution model from micro-CT images; (b) generation of surface geometric model in STL format; (c) additive manufacturing of the scaffold; (d) scaffold shape verification relative to the geometric design; and (e) verification of mechanical properties through finite element analysis. In this research, all the proposed stages of the approach were tested. The input included micro-CT scans of porous ceramic structure, which is quite similar to commercial porous scaffolds. The results show that the proposed method is feasible for design and manufacture of micro-scale scaffolds. KW - Micro-scale bone scaffolds KW - Additive manufacturing KW - Multiscale FEA KW - Ceramics KW - Multiresolution modeling PY - 2013 DO - https://doi.org/10.1016/j.procir.2013.01.049 SN - 2212-8271 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 5 SP - 247 EP - 252 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-28003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 DO - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Enthaler, S. A1 - Krackl, S. A1 - Epping, J.D. A1 - Eckhardt, B. A1 - Weidner, Steffen A1 - Fischer, A. T1 - Iron-based pre-catalyst supported on polyformamidine for C-C bond formation N2 - In the present study the incorporation of iron into an organic polymer, composed of formamidine subunits [R–N=C(H)–NH–R], has been examined. The catalytic ability of the recyclable material was investigated in the iron-catalyzed formation of C–C bonds. After optimization of the reaction conditions, excellent yields and chemoselectivities were feasible. KW - Polyforamidine KW - Synthesis KW - Catalytic ability PY - 2012 DO - https://doi.org/10.1039/c2py00540a SN - 1759-9954 SN - 1759-9962 VL - 3 IS - 3 SP - 751 EP - 756 AN - OPUS4-25461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ortel, Erik A1 - Fischer, A. A1 - Chuenchom, L. A1 - Polte, Jörg A1 - Smarsly, B. A1 - Krähnert, R. T1 - Mesoporous metal oxide films with controlled pore size, wall thickness and pore hierarchy templated by PEO-b-PB-b-PEO triblock copolymers T2 - 24. Deutsche Zeolith- Tagung CY - Magdeburg, Germany DA - 2012-03-07 PY - 2012 AN - OPUS4-25122 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -