TY - CONF A1 - Falkenberg, Rainer T1 - Simulation von Rißwachstum durch ein thermodynamisch konsistentes Phasenfeldmodell N2 - Durch ein thermodynamisch konsistentes Phasenfeldmodell kann die Rißinitiierung sowie das Rißwachstum in einem spröden Material mit Hilfe der Finite-Elemente-Methode simuliert werden. Ein diskreter scharfer Riß wird durch einen Regularisierungsansatz in ein Phasenfeld überführt, das einen kontinuierlichen Übergang zwischen Riß und Restmaterial abbildet. Modelle von C(T) - Bruchmechanikproben konnten unter monoton wachsender Belastung simuliert werden. Die Ergebnisse konnten mit analytischen Ergebnissen der linear-elastischen Bruchmechanik verglichen werden. Ablenkungen des Rißpfades konnten durch Modelle von gelochten Proben simuliert werden. An dem Modell eines Dreipunktbiegeversuchs konnte die Rißinitiierung demonstriert werden. Die Kenntnis und Modellierung eines vordefinierten Rißpfades ist bei Verwendung dieses Modells nicht erforderlich, was insbesondere zur Untersuchung von komplexen Rißpfaden von Vorteil sein kann. N2 - Crack initiation and propagation in a brittle material is modeled in the finite-element-framework by an extended thermodynamical phase field formulation. The sharp crack discontinuity is transferred into a degradation phase field by a regularisation that ensures a continous transition between crack and residual material. The model of a C(T)-specimen under monotonic increasing load was simulated. The results were compared with analytical results of linear-elastic fracture mechanics. Crack kinking was simulated on a specimen with holes. Crack initiation was studied one a model of a three-point bending specimen. The knowledge and modeling of a predefined crack path is not required with the application of this model and provides the ability to calculate complex crack topologies. T2 - 48. Tagung des DVM-Arbeitskreises Bruchmechanik und Bauteilsicherheit, Bruchmechanische Werkstoff- und Bauteilbewertung: Beanspruchungsanalyse, Prüfmethoden und Anwendungen CY - Freiburg im Breisgau; Germany DA - 16.02.2016 KW - Finite-Elemente-Methode KW - finite-element-method KW - Rißwachstum KW - Rißinitiierung KW - Phasenfeldmodell KW - Crack growth KW - crack initiation KW - phase field model PY - 2016 SN - 2366-4797 VL - DVM Bericht 248 SP - 41 EP - 50 CY - Berlin AN - OPUS4-35483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer T1 - Simulation von Rißwachstum durch ein thermodynamisch konsistentes Phasenfeldmodell N2 - Durch ein thermodynamisch konsistentes Phasenfeldmodell kann die Rißinitiierung sowie das Rißwachstum in einem spröden Material mit Hilfe der Finite-Elemente-Methode simuliert werden. Ein diskreter scharfer Riß wird durch einen Regularisierungsansatz in ein Phasenfeld überführt, das einen kontinuierlichen Übergang zwischen Riß und Restmaterial abbildet. Modelle von C(T) - Bruchmechanikproben konnten unter monoton wachsender Belastung simuliert werden. Die Ergebnisse konnten mit analytischen Ergebnissen der linear-elastischen Bruchmechanik verglichen werden. Ablenkungen des Rißpfades konnten durch Modelle von gelochten Proben simuliert werden. An dem Modell eines Dreipunktbiegeversuchs konnte die Rißinitiierung demonstriert werden. Die Kenntnis und Modellierung eines vordefinierten Rißpfades ist bei Verwendung dieses Modells nicht erforderlich, was insbesondere zur Untersuchung von komplexen Rißpfaden von Vorteil sein kann. T2 - 48. Tagung des DVM-Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Freiburg in Breisgau, Germany DA - 16.02.2016 KW - Simulation KW - Rißwachstum KW - Phasenfeldmodell PY - 2016 AN - OPUS4-35485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stargardt, Patrick A1 - Bresch, Sophie A1 - Falkenberg, Rainer A1 - Mieller, Björn T1 - Effect of Reaction Layers on Internal Stresses in Co‐Fired Multilayers of Calcium Manganate and Calcium Cobaltite N2 - A widespread recovery of waste heat requires a cost‐effective production of thermoelectric generators. Thermoelectric oxides are predestined for use at high temperatures. For manufacturing reasons, a multilayer generator design will be easily scalable and cost‐effective. To evaluate the potential of ceramic multilayer technology for that purpose, a multilayer of the promising thermoelectric oxides calcium cobaltite (Ca3Co4O9), calcium manganate (CMO, CaMnO3), and glass–ceramic insulation layers is fabricated. Cracks and reaction layers at the interfaces are observed in the microstructure. The compositions of these reaction layers are identified by energy‐dispersive X‐ray spectroscopy and X‐ray diffraction. Mechanical and thermal properties of all layers are compiled from literature or determined by purposeful sample preparation and testing. Based on this data set, the internal stresses in the multilayer after co‐firing are calculated numerically. It is shown that tensile stresses in the range of 50 MPa occur in the CMO layers. The reaction layers have only a minor influence on the level of these residual stresses. Herein, it is proven that the material system is basically suitable for multilayer generator production, but that the co‐firing process and the layer structure must be adapted to improve densification and reduce the tensile stresses in the CMO. KW - Ceramic multilayers KW - Co-firings KW - Internal stresses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601626 DO - https://doi.org/10.1002/pssa.202300956 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-60162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer T1 - Simulation of environmentally-assisted material degradation by a thermodynamically consistent phase-field model N2 - Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective of this investigation and realised within the theory of gradient-extended dissipative continua with lengthscales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based on the introduction of a crack phase-field to maintain the evolution of complex crack topologies. Within a thermodynamical framework allowing for mechanical and mass transport processes the crack phasefield is capable to model crack initiation and propagation by the finite element method. As complex crack situations such as crack initiation, curvilinear crack patterns and crack branching are usually hard to realise with sharp crack models, they can be assessed without the requirement of a predefined crack path within this method. The numerical modeling of a showcase demonstrates a crack initiation as well as a crack propagation situation with respect to the determination of stress-intensity factors; a crack deviation situation with a curvilinear crack path is modeled by the introduction of a geometrical perturbation and a locally enhanced species concentration. T2 - Fracture and Damage Mechanics 2016 CY - Alicante, Spain DA - 14.09.2016 KW - Crack growth KW - Crack initiation KW - Mass transport KW - Phase field model KW - Finite-element-method PY - 2016 AN - OPUS4-37810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2018 AN - OPUS4-46895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - A phase-field approach to fracture coupled with mass transport for the simulation of environmentally-assisted damage N2 - With the introduction of a mass transport mechanism the entire problem is subjected to a time frame that dictates the time-dependent action of soluted species on mechanical properties. A numerical framework within the phase-field approach is presented with an embrittlement-based coupling mechanism. The underlying functionals are expressed in terms of the displacement, mass concentration and crack phase-field. Within the phase-field approach the modelling of sharp crack discontinuities is replaced by a diffusive crack model facilitating crack initiation and complex crack topologies without the requirement of a predefined crack path. The isotropic hardening of the elasto-plastic deformation model and the local fracture criterion are affected by the species concentration. This allows for embrittlement and leads to an accelerated crack propagation. An extended mass transport equation for hydrogen embrittlement, accounting for mechanical stresses and deformations, is implemented. For stabilisation purposes a staggered scheme is applied to solve the system of partial differential equations by a multi-field finite-element method. A thermodynamically consistent coupling relation that accommodates the required mechanisms is presented. KW - Environmentally assisted cracking KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport PY - 2018 DO - https://doi.org/10.1002/pamm.201710088 VL - 17 SP - 237 EP - 238 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer A1 - Darvishi Kamachali, Reza T1 - Segregation-induced hydrogen embrittlement in titanium N2 - Although titanium offers an optimal combination of strength, low weight, and toughness for various applications, it suffers from a drawback: loss of ductility upon exposure to hydrogen. In this work, we couple CALPHAD-integrated density-based thermodynamic modelling of hydrogen segregation with an experimentally calibrated fracture model to investigate its on crack propagation in titanium. Here we propose to model the crack propagation path as a quasi-interface with slightly opened structure and reduced atomic density, enabling interstitial hydrogen segregation. The atomic density is then directly linked with the damage parameter. We found that hydrogen segregation in titanium undergoes a significant transition such that above a threshold of only few atomic percent hydrogen in the solid solution, the interfacial hydrogen concentration exceeds 20 at.%. Integrating this information into our fracture model, the material damage evolution could be explained by a segregation-affected Griffith crack energy, resulting in material decohesion. We found that the segregation transition and subsequent embrittlement effects are critically sensitive to the temperature in the system. The present results suggest a mechanism underlying the sudden loss of fracture toughness during crack propagation, in relation to the ductile-to-brittle transition observed in titanium alloys exposed to hydrogen. The proposed CALPHAD-integrated chemo-mechanical framework can be further generalised for studying more complex failure mechanisms in various materials. KW - Segregation transition KW - Hydrogen embrittlement KW - Titanium alloys KW - Crack propagation KW - Ductile-to-brittle transition PY - 2025 DO - https://doi.org/10.1016/j.mtla.2025.102411 SN - 2589-1529 VL - 41 SP - 1 EP - 12 PB - Elsevier Inc. AN - OPUS4-63130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer T1 - Modelling of hydrogen-induced ductility loss in titanium-based hydrogen storage N2 - One promising solution for decarbonisation is the use of hydrogen as energy carrier. Besides its exceptional advantages like high calorific value, better safety and non-existent harmful emissions, one major challenge is still hydrogen embrittlement of Ttitanium alloys used as a hydrogen storage. In this work, a method is presented that can numerically model and determine a threshold concentration of hydrogen in solid solution responsible for a sudden ductile-to-brittle transition. The origin of this sudden loss of ductility lies in the segregation kinetics thermodynamics that is modelled together with an elastoplastic fracture mechanics model. Starting from experimental fracture mechanics test data, a meaningful coupling mechanism was found for the fracture mechanics cohesive zone model in the form of a segregation-modified cohesive energy that triggers an acceleration of crack extension above defined concentration values. It can be demonstrated that above a threshold of only few atomic percent hydrogen in the solid solution, the segregated hydrogen concentration exceeds 20 at.%. The current results present a mechanism that enables the modelling of the sudden ductility loss triggered by a segregation-affected crack energy expression in titanium alloys exposed to hydrogen. This method is not only applicable to other various materials but can also be a substantial benefit for the safety assessment of hydrogen storage devices. T2 - 5th EMMC International Workshop 2025 CY - Vienna, Austria DA - 08.04.2025 KW - Segregation Transition KW - Hydrogen Embrittlement KW - Titanium Alloys KW - Crack Propagation KW - Ductile-to-Brittle Transition PY - 2025 AN - OPUS4-63177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - Simulation of Environmentally-Assisted Material Degradation by a Thermodynamically Consistent Phase-Field Model N2 - Environmentally-assisted material degradation involves mass transport and mechanical processes interacting in the material. A well-known example is hydrogen-induced stress-corrosion cracking. One major challenge within this scope is the quantification of the coupling mechanisms in question. The computational modeling of environmentally-assisted cracks is the key objective of this investigation and realised within the theory of gradient-extended dissipative continua with lengthscales. The modeling of sharp crack discontinuities is replaced by a diffusive crack model based on the introduction of a crack phase-field to maintain the evolution of complex crack topologies. Within a thermodynamical framework allowing for mechanical and mass transport processes the crack phasefield is capable to model crack initiation and propagation by the finite element method. As complex crack situations such as crack initiation, curvilinear crack patterns and crack branching are usually hard to realise with sharp crack models, they can be assessed without the requirement of a predefined crack path within this method. The numerical modeling of a showcase demonstrates a crack initiation as well as a crack propagation situation with respect to the determination of stress-intensity factors; a crack deviation situation with a curvilinear crack path is modeled by the introduction of a geometrical perturbation and a locally enhanced species concentration. KW - Finite-element method KW - Crack growth KW - Crack initiation KW - Mass transport KW - Phase field model PY - 2016 DO - https://doi.org/10.4028/www.scientific.net/KEM.713.38 SN - 1662-9795 VL - 713 SP - 38 EP - 41 PB - Trans Tech Publications CY - Switzerland AN - OPUS4-37152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer T1 - Hydrogen Assisted Cracking: Mechanisms and coupling phenomena T2 - 7th Meeting of the TC2 on Micromechanisms of the European Structural Integrity Society CY - Berlin, Germany DA - 2011-11-24 PY - 2011 AN - OPUS4-24901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - Modelling of environmentally assisted material degradation in the crack phase-field framework N2 - The simulation of crack propagation was conducted with a diffusive crack model in a variational framework. Moreover, the physically sound introduction of mass transport and coupling mechanisms due to environmentally assisted effects could be realised in this framework. The objective consists of the application of the phase-field Approach towards the simulation of environmentally assisted material degradation with the advantage of a non-required predefined crack path and a mesh-independent non-local formulation that facilitates the damage evolution with respect to material softening. The sharp crack is regularised by the introduction of a phase-field order parameter leading to a diffusive crack formulation. Besides the equations originating from the linear momentum balance an additional evolution equation for the crack phase-field is introduced. Furthermore, mass transport is simulated by a Diffusion equation. The description delivered by the variational phase-field framework is able to simulate crack propagation according to published numerical test cases. Additionally, the calculation of stress intensity factors is possible as well as crack resistance curves that describe stable crack propagation. KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport KW - Environmentally assisted cracking PY - 2019 DO - https://doi.org/10.1177/1464420718761220 SN - 1464-4207 VL - 233 IS - 1 SP - 5 EP - 12 PB - SAGE AN - OPUS4-47152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Ávila Calderón, Luis A1 - Mohr, Gunther A1 - Sommer, Konstantin A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study N2 - The underlying cause of mechanical anisotropy in additively manufactured (AM) parts is not yet fully understood and has been attributed to several different factors like microstructural defects, residual stresses, melt pool boundaries, crystallographic and morphological textures. To better understand the main contributing factor to the mechanical anisotropy of AM stainless steel 316L, bulk specimens were fabricated via laser powder bed fusion (LPBF). Tensile specimens were machined from these AM bulk materials for three different inclinations: 0◦, 45◦, and 90◦ relative to the build plate. Dynamic Young’s modulus measurements and tensile tests were used to determine the mechanical anisotropy. Some tensile specimens were also subjected to residual stress measurement via neutron diffraction, porosity determination with X-ray micro-computed tomography (μCT), and texture analysis with electron backscatter diffraction (EBSD). These investigations revealed that the specimens exhibited near full density and the detected defects were spherical. Furthermore, the residual stresses in the loading direction were between −74 ± 24 MPa and 137 ± 20 MPa, and the EBSD measurements showed a preferential ⟨110⟩ orientation parallel to the build direction. A crystal plasticity model was used to analyze the elastic anisotropy and the anisotropic yield behavior of the AM specimens, and it was able to capture and predict the experimental behavior accurately. Overall, it was shown that the mechanical anisotropy of the tested specimens was mainly influenced by the crystallographic texture. KW - Mechanical anisotropy KW - Residual stress KW - Crystal plasticity KW - Selective laser melting (SLM) KW - Laser beam melting (LBM) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511719 DO - https://doi.org/10.1016/j.msea.2020.140154 SN - 0921-5093 VL - 799 SP - 140154 PB - Elsevier B.V. AN - OPUS4-51171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häberle, Nicolas A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Falkenberg, Rainer A1 - Kahlcke, Ole T1 - Application of multi-phase viscoplastic material modelling to computational welding mechanics of grade-s960ql steel N2 - The sound numerical prediction of welding-induced thermal stresses, residual stresses, and distortions strongly depends on the accurate description of a welded material’s thermomechanical deformation behaviour. In this work, we provide experimental data on the viscoplastic deformation behaviour of a grade-s960ql steel up to a temperature of 1000 ◦C. In addition, a multi-phase viscoplastic material model is proposed, which accounts for the experimentally observed isothermal deformation behaviour of grade-s960ql steel base and austenitised material, as well as for athermal contributions that originate from solid-state phase transformations. The multi-phase viscoplastic and a classic rateindependent isotropic hardening material model were applied in the numerical simulations of both-ends-fixed bar Satoh tests and a single-pass gas metal arc weld. The influence of material modelling choices on the agreement between numerical simulation and experimental results is discussed, and recommendations for further work are given. KW - Residual stress KW - Viscoplasticity KW - Material modeling KW - Grade S960QL steel PY - 2018 DO - https://doi.org/10.1016/j.crme.2018.08.001 VL - 346 IS - 11 SP - 1018 EP - 1032 PB - Elsevier Masson SAS AN - OPUS4-46512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Uckert, Danilo A1 - Matzak, Kathrin A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Peter, Frauke A1 - Fedelich, Bernard A1 - Falkenberg, Rainer A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy A1 - Skrotzki, Birgit T1 - TMF-Lebensdauerberechnung ATL-Heißteile II - Erweiterung bestehender Werkstoff- und Rechenmodelle zur Lebensdauervorhersage für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung (Abschlussbericht) N2 - In diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse als im Vorgängervorhaben, d.h. auf das austenitische Gusseisen EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S). Zunächst wurde dafür eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Das Spannungs-Verformungs-Verhalten und die Lebensdauer in den LCF- und TMF-Versuchen werden durch das Modell auch für den neuen Werkstoff überwiegend gut beschrieben. LCF-Versuche mit Haltezeit bei 900 °C sowie IP-TMFVersuche mit einer Obertemperatur von 900 °C werden weniger gut vorhergesagt, da sich der Schädigungsmechanismus ändert. Eine Verifikation des Modells erfolgte mit Hilfe eines Bauteilversuchs an einem Abgassammler. Die überwiegende Anzahl der experimentell ermittelten Rissorte wurden von dem Modell vorhergesagt. Ein wesentliches Ziel des Vorhabens war, den Einfluss von HCF-Schwingungen auf die TMF-Lebensdauer vertieft experimentell zu untersuchen und das bereits bestehende Lebensdauermodell auf HCF-Überlagerung zu erweitern. Es wurde ein bruchmechanisch motivierter Ansatz entwickelt, in dem die Lebensdauerminderung durch die im TMF-Zyklus überlagerten HCF-Schwingungen abgebildet wird. Mit diesem Ansatz lassen sich die Lebensdauern sowohl für den Werkstoff SiMo 4.05 als auch für den Ni-Resist in guter Übereinstimmung mit dem Experiment Vorhersagen. Das Ziel des Forschungsvorhabens ist erreicht worden. PY - 2015 IS - 1082 SP - 1 EP - 168 CY - Frankfurt/Main AN - OPUS4-35112 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Uckert, Danilo A1 - Matzak, Kathrin A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Peter, Frauke A1 - Fedelich, Bernard A1 - Falkenberg, Rainer A1 - Haftaoglu, Cetin A1 - Kindrachuk, Vitaliy T1 - Erweiterung bestehender Werkstoff- und Rechenmodelle zur Lebensdauervorhersage für Abgasturbolader-Heißteile unter thermomechanischer Ermüdungsbeanspruchung N2 - In diesem Forschungsvorhaben erfolgte eine Überprüfung der Übertragbarkeit der Werkstoff- und Rechenmodelle für die Lebensdauervorhersage von ATL-Heißteilen unter TMF-Beanspruchung auf eine andere Werkstoffklasse, d. h. auf eine austenitische Gusseisenlegierung mit Kugelgraphit. Dafür wurde die Legierung EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) ausgewählt. Zunächst wurde für diesen Werkstoff eine experimentelle Datenbasis geschaffen, da diese vor Beginn des Vorhabens nicht ausreichend war. Dazu wurden Zug-, Kriech-, LCF- und TMF-Versuche durchgeführt, die der Kalibrierung der Modelle dienten. Unter TMF-Belastung zeigte der untersuchte Werkstoff ein stark abweichendes Verhalten von den im vorangegangenen Vorhaben untersuchten ferritischen SiMo-Legierungen: Der Werkstoff Ni-Resist zeigte insgesamt eine vergleichbare Festigkeit unter OP- und IP-Bedingungen, während die ferritischen Legierungen unter IP-Beanspruchung eine deutlich höhere Festigkeit aufweisen. Mit zunehmenden Temperaturen und Haltezeiten unter Zugspannungen wurden dagegen beim Werkstoff Ni-Resist Hinweise auf Kriechschädigung gefunden, die schädigungsrelevant sind. Auch dies ist ein deutlicher Unterschied zu den SiMo-Legierungen. Das Spannungs-Verformungs-Verhalten in den LCF- und TMF-Versuchen wird durch das Modell auch für den neuen Werkstoff überwiegend gut beschrieben. Das Gleiche gilt für die Lebensdauervorhersage, die mit Ausnahme der Prüftemperatur 900 °C innerhalb eines Fak-tors zwei liegt. Eine Verifikation des Modells erfolgte mit Hilfe eines Bauteilversuchs an einem Abgassammler, der abwechselnd mit heißem und kaltem Gas durchströmt wurde. Ziel der Bauteilsimulation war insbesondere die Vorhersage der Rissbildungsorte. Eine Vorhersage der exakten Lebensdauer wurde nicht erwartet, da das Bauteil mit einer Gusshaut behaftet war, während die für die Kalibrierung des Lebensdauermodells verwendeten Versuche an bearbeiteten, glatten Proben ohne Gusshaut durchgeführt wurden. Die überwiegende Anzahl der experimentell ermittelten Rissorte wurden vorhergesagt. Schließlich war ein wesentliches Ziel des Vorhabens, den Einfluss von HCF-Schwingungen auf die TMF-Lebensdauer vertieft experimentell zu untersuchen und das bereits bestehende Lebensdauermodell auf HCF-Überlagerung zu erweitern. Dazu wurde zunächst die Daten-basis aus dem Vorgängervorhaben am Bespiel von SiMo 4.05 deutlich ausgebaut, um die verschiedenen Einflussparameter zu erfassen. Es wurde ein Ansatz entwickelt, in dem die Lebensdauerminderung durch die überlagerten HCF-Schwingungen abgebildet wird. Dabei wird davon ausgegangen, dass ab einer bestimmten Risstiefe die Überlagerung der HCF-Schwingungen die Rissausbreitung stark beschleunigt. Der Zeitpunkt, wann diese Beschleunigung eintritt, wird als maßgeblich für die Lebensdauerminderung angesehen. Mit diesem Ansatz lassen sich die Lebensdauern für beide Werkstoffe in guter Übereinstimmung mit dem Experiment vorhersagen. T2 - Informationstagung Turbomaschinen, Frühjahr 2016 CY - Bad Neuenahr, Germany DA - 13.04.2016 KW - Ermüdung KW - LCF KW - Modellierung KW - Schädigung KW - Simulation KW - TMF PY - 2016 VL - Heft R575 SP - 1 EP - 35 AN - OPUS4-35823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -