TY - JOUR A1 - Falk, Florian A1 - Sobol, Oded A1 - Stephan-Scherb, Christiane T1 - The impact of the microstructure of Fe-16Cr-0.2C on high-temperature oxidation – sulphidation in SO2 JF - Corrosion Science N2 - This study elucidates the impact of the microstructure of Fe-16Cr-0.2C on oxide layer formation at 650 ◦C in Ar-0.5 % SO2. A cold-rolled and two heat-treated states of the alloy were exposed for up to 1000 h. The samples were characterised in detail from microstructural and chemical perspectives using scanning electron microscopy (SEM), X-ray diffraction (XRD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The microstructural modification of the alloy by heat-treatment was advantageous. It was found that Cr-carbides support chromia formation and reduce sulphidation when their area fraction is low and diameter is small. KW - Steel KW - Iron KW - SIMS KW - SEM KW - High temperature corrosion KW - Oxidation KW - Sulphidation PY - 2021 DO - https://doi.org/10.1016/j.corsci.2021.109618 VL - 190 SP - 109618 PB - Elsevier Ltd. AN - OPUS4-53001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Lehmusto, Juho A1 - Falk, Florian A1 - Sobol, Oded A1 - Pint, Bruce T1 - Comprehensive insights into competitive oxidation/sulfidation reactions on binary ferritic alloys at high temperatures JF - Corrosion Science N2 - Interpreting high-temperature corrosion induced by mixed-gas atmospheres is challenging due to the different contributions of oxidizing gases. Here, a comprehensive study on the combined oxidation/sulfidation using label molecules is presented. Fe-Cr model alloys with 2 wt% and 9 wt% Cr were isothermally exposed using a volumetric mixture of 0.5%S16O2/27%H218O and 0.5%S16O2/7%H218O at 650 ◦C for 5 h and then characterized by secondary ion mass spectroscopy (SIMS). Additionally, the reactions were followed in-situ utilizing energy dispersive X-ray diffraction. The study showed that both S16O2 and H218O contribute to the oxidation of the alloys but to different extents depending on the Cr-content. KW - SEM KW - Steel KW - Iron KW - SIMS PY - 2022 DO - https://doi.org/10.1016/j.corsci.2022.110236 SN - 0010-938X VL - 203 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -