TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Redmer, Bernhard A1 - Ewert, Uwe T1 - Mobile high-energy X-ray inspection of cargo containers with complex scenarios: results of the SEFLOG project T2 - Future Security 2014 - 9th Future security research conference (Proceedings) N2 - The research and development (R&D) in the field of safety and security of sea-freight Containers has gained more importance after the U.S. house resolution 1 (H.R.1). According to this law, all the freight Containers which are transported from non-U.S. port of origin to U.S. ports should be inspected 100% against explosive and contraband materials using non-intrusive imaging equipment and radiation detectors. As the port of Hamburg and Bremerhaven are the leading Container ports in Europe, it is essential to develop reliable and high-resolution detection technologies for the non-destructive inspection of large sea-freight Containers. T2 - Future Security 2014 - 9th Future security research conference CY - Berlin, Germany DA - 16.09.2014 KW - High-energy X-ray imaging KW - Digital detector arrays KW - Container inspection KW - Contraband detection KW - Image quality PY - 2014 SN - 978-3-8396-0778-7 SP - 591 EP - 594 AN - OPUS4-32238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Deresch, Andreas A1 - Redmer, Bernhard A1 - Ewert, Uwe T1 - Dual high-energy X-ray digital radiography for material discrimination in cargo containers JF - The e-journal of nondestructive testing & ultrasonics N2 - In this contribution, we present a dual high-energy X-ray imaging technique for cargo container inspection using the 'spectral high-energy X-ray attenuation method'. This method is based on attenuation of continuous highenergy spectra. The developed experimental technique consists of a betatron as high-energy (up to 7.5 MeV) X-ray source and a matrix detector with high spatial resolution (400 ìm) for digital X-ray imaging. In order to evaluate the material discrimination capability using dual high-energy X-ray imaging, a test specimen is proposed, comprising step wedges of different low and high atomic number (Z) materials. The selected X-ray spectra for the dual-energy experiments correspond to 3 MV and 7.5 MV acceleration potential of the betatron. We evaluated the ratio between low- and high-energy X-ray attenuation coefficients quantitatively based on simulated poly-energetic high-energy X-ray source spectra and the detector sensitivity using the 'analytical Radiographic Testing inspection simulation tool' (aRTist) developed at BAM. The simulated effective attenuation coefficients are compared with corresponding experimental results in order to establish a method for identification of low- and high-Z materials in the container. Finally, important applications of the proposed technique in the context of aviation security are discussed. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Digital radiography KW - NDT KW - High-energy X-ray imaging KW - Betatron KW - Digital detector array (DDA) KW - Container inspection KW - Material discrimination KW - Effective attenuation coefficient PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-322394 UR - https://www.ndt.net/?id=16430 SN - 1435-4934 VL - 19 IS - 12 SP - 1 EP - 10 PB - NDT.net CY - Kirchwald AN - OPUS4-32239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -