TY - CONF A1 - Serrano Munoz, Itziar A1 - Evsevleev, Sergei A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Damage characterization via 2D and 3D X-ray refraction techniques N2 - We present two examples of the potential of synchrotron X-ray refraction techniques. First, we focus on the 3D imaging of hydrogen assisted cracks in an EN AW – 6060 aluminium alloy which are otherwise undetected by absorption-based CT. The second work is a quantitative analysis of the damage evolution in an Al/Al2O3 Metal Matrix Composite during interrupted in-situ tensile load. T2 - International Conference on Tomography of Materials & Structures CY - Cairns, Australia DA - 22.07.2019 KW - X-ray refraction KW - Analyzer-based imaging KW - Aluminum alloy KW - Metal matrix composite KW - Damage characterization PY - 2019 AN - OPUS4-48604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Garces, Gerardo A1 - Requena, Guillermo A1 - Sevostianov, Igor A1 - Bruno, Giovanni T1 - Stress-induced damage evolution in aluminum matrix composites N2 - Two metal matrix composites, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles were studied. Distribution, orientation, and volume fraction of the different phases was determined by means of synchrotron computed tomography. The load partitioning between phases was investigated by in-situ neutron diffraction compression tests. The internal damage of the eutectic Si phase and Al2O3 fibers after ex-situ compression tests was directly observed in CT reconstructed volumes. Significant debonding between Al-matrix and SiC particles was found. Those observations allowed rationalizing the load transfer among the constituent phases of two different composites. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the composite with one and two ceramic reinforcements. The model rationalizes the experimental data, and predicts the evolution of principal stresses in each phase. T2 - The 4th International Congress on 3D Material Science 2018 CY - Elsinore, Denmark DA - 10.06.2018 KW - Computed Tomography KW - Aluminium KW - Metal Matrix Composite KW - Load Partition PY - 2018 AN - OPUS4-45397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Hentschel, Manfred P. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - Formation of refractive distortions in radiology T2 - 7th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 2015-12-09 PY - 2015 AN - OPUS4-35126 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Garces, G. A1 - Sevostianov, I. A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Micromechanical response of multi-phase Al-alloy matrix composites under uniaxial compression N2 - Aluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. Being a multiphase material, most MMCs show complex micromechanical behavior under different load conditions. In this work we investigated the micromechanical behavior of two MMCs, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles. Both MMCs have complex 3D microstructure consisting of four and five phases: Al-alloy matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles. The in-situ neutron diffraction compression experiments were carried out on the Stress-Spec beamline and disclosed the evolution of internal phase-specific stresses in both composites. In combination with the damage mechanism revealed by synchrotron X-ray computed tomography (SXCT) on plastically pre-strained samples, this allowed understanding the role of every composite’s phase in the stress partitioning mechanism. Finally, based on the Maxwell scheme, a micromechanical model was utilized. The model perfectly rationalizes the experimental data and predicts the evolution of principal stresses in each phase. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 09.12.2020 KW - Metal matrix composite KW - Neutron diffraction KW - Damage mechanism KW - Load transfer KW - Computed tomography PY - 2020 AN - OPUS4-52032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Bruno, Giovanni T1 - Damage Analysis in Metal Matrix Composites by means of Synchrotron Radiation Computed Tomography N2 - The damage evolution after compression tests of two types of MMC, consisting of eutectic AlSi12CuMgNi alloy and reinforced with 15vol% of Al2O3 fibers and with 7vol% of Al2O3 fibers+15vol% of SiC particles was studied by synchrotron CT. Internal damage at different pre-strain conditions in eutectic Si, intermetallic phases and Al2O3 fibers was observed, as well as debonding of SiC particles. T2 - HZB User Meeting CY - BESSY II, Berlin, Germany DA - 14.12.2017 KW - Aluminum KW - Metal Matrix Composite KW - Damage Analysis KW - Computed tomography KW - Synchrotron Radiation PY - 2017 AN - OPUS4-43467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -