TY - JOUR A1 - Ernst, O. C. A1 - Böttcher, K. A1 - Fischer, Daniel A1 - Uebel, D. A1 - Teubner, T. A1 - Boeck, T. T1 - Morphogenesis of liquid indium microdroplets on solid molybdenum surfaces during solidification at normal pressure and under vacuum conditions N2 - Electrical and optical applications based on micro- and nanoparticles have specific demands on their interfacial properties. These properties are strongly related to atmospheric conditions to which the particles were exposed during their formation. In this study, metallic In microparticles are synthesized by solidification of In droplets on an amorphous Mo substrate at normal pressure and under vacuum conditions. The influence of ambient pressure on the interface and surface shape is investigated. While solidification at atmospheric pressure leads to collapsed particles with undisturbed contact to the substrate, low pressures result in smooth spherical particles but with cavities inside. Numerical simulations with COMSOL Multiphysics reveal different temperature profiles and heat flux in particles during solidification for both cases. This indicates different starting conditions of the solidification, which leads to the described phenomenon eventually. The investigation of the varying process conditions on the particle shape in combination with the calculated and measured temperature curves over time gives valuable insights into new approaches to synthesize micro- and nanoparticles with defined interfacial properties. Both ambient pressure and cooling rate provide well-controllable and reliable parameters for the realization of different interfacial shapes. KW - Morphogenesis KW - Indium KW - Microdroplet KW - Molybdenum PY - 2022 U6 - https://doi.org/10.1021/acs.langmuir.1c02744 SN - 0743-7463 SN - 1520-5827 VL - 38 IS - 2 SP - 762 EP - 768 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, M. A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Ernst, O. A1 - Andree, Stefan A1 - Bonse, Jörn A1 - Boeck, T. A1 - Krüger, Jörg T1 - Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells N2 - Light concentration opens up the path to enhanced material efficiency of solar cells via increased conversion efficiency and decreased material requirement. For true material saving, a fabrication method allowing local growth of high quality absorber material is essential. We present two scalable fs-laser based approaches for bottom-up growth of Cu(In,Ga)Se2 micro islands utilizing either site-controlled assembly of In(,Ga) droplets on laser-patterned substrates during physical vapor deposition, or laser-induced forward transfer of (Cu,In,Ga) layers for local precursor arrangement. The Cu(In,Ga)Se2 absorbers formed after selenization can deliver working solar devices showing efficiency enhancement under light concentration. T2 - SPIE OPTO, 2018 CY - San Francisco, USA DA - 29.01.2018 KW - Chalcopyrite KW - Cu(In,Ga)Se2 KW - Fs-laser patterning KW - Laser-induced forward transfer KW - Micro solar cell PY - 2018 SN - 978-1-5106-1540-3 SN - 0277-786X SN - 1996-756X VL - 10527 SP - 1052707-1 EP - 1052707-9 PB - SPIE CY - Bellingham, WA, USA AN - OPUS4-44450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Andree, Stefan A1 - Heidmann, B. A1 - Bonse, Jörn A1 - Eylers, K. A1 - Ernst, O. A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics N2 - Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated Illumination. KW - Chalcopyrite KW - Femtosecond laser patterning KW - Laser-induced forward transfer KW - Micro-concentrator solar cell KW - Photovoltaics PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-470026 SN - 2190-4286 VL - 9 SP - 3025 EP - 3038 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-47002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -