TY - JOUR A1 - Sennikov, P. A1 - Ermakov, A. A1 - Kornev, R. A1 - Gornushkin, Igor B. T1 - Laser induced dielectric breakdown in reactive mixture SiF4 + H2 JF - Spectrochimica Acta Part B N2 - Important chemical process of reduction of SiF4 by hydrogen is realized in laser induced dielectric breakdown (LIDB) plasma in a gas mixture of SiF4 and H2. The process may be an alternative to a method of Plasma enhanced chemical vapor deposition (PECVD) which is commonly used for production of pure and isotopically pure silicon films. The composition of laser induced plasma in gases SiF4, SiF4 + H2, SiF4 + H2 + Ar at atmospheric pressure is studied and compared to the composition of inductively coupled plasma (ICP) in the same gases but at reduced pressure of 3 Torr. The gaseous products of chemical reactions are inferred from optical emission spectroscopy (OES) and IR spectroscopy. The reaction products of silicon fluoride SiF and fluorosilanes SiHxFy (x, y = 1, 2, 3) in LIDB plasma are observed and confirmed by equilibrium chemistry calculations and simulations of plasma expansion dynamics using a fluid dynamic-chemical plasma model. It is further suggested that chemisorption of fluorinated species like SiFx (x = 1, 2) followed by the surface reaction with H-atoms lead to a formation of silicon-to‑silicon bonds on a substrate surface. A conclusion is drawn that energetic laser induced plasma can prove efficient for one-step PECVD by hydrogen reduction of SiF4. KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2021 DO - https://doi.org/10.1016/j.sab.2021.106099 VL - 179 SP - 106099 PB - Elsevier B.V. AN - OPUS4-53583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Dielectric Breakdown for Chemical Vapor Deposition by Hydrogen Reduction of Volatile Boron Halides BCl3 and  BF3 JF - Plasma Chemistry and Plasma Processing N2 - A possibility of deposition from laser-induced plasma is investigated in search for an economic and simple method for obtaining isotopic compounds from enriched gaseous precursors although no isotopic compounds are used in this the proof-of-principle work. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Equilibrium chemistry calculations show the deposition of boron, boron carbide, and carbon is thermodynamically favorable in BCl3 systems and only carbon in BF3 systems. Dynamic calculation of expanding plasma is performed using fluid dynamics coupled with equilibrium chemistry. Condensed phases of boron, boron carbide, and graphite are predicted with maximum concentrations in peripheral zones of the plasma. In experiment, plasma is induced in mixtures BCl3, H2 + BCl3, H2 + Ar + BCl3, H2 + BCl3 + CH4, BF3, H2 + BF3, H2 + Ar + BF3, and H2 + Ar + BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectrometry methods. The results show the composition of reaction products close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all reaction mixtures. Due to technical reasons only FTIR characterization of the BCl3 + H2 + CH4 deposit is done. It points to presence of condensed boron and boron carbide predicted by the model. Overall, the calculations and preliminary experimental results imply the chemical vapor deposition with laser induced plasma is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. KW - Boron halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown, Hydrogen reduction PY - 2020 DO - https://doi.org/10.1007/s11090-020-10096-w VL - 40 IS - 5 SP - 1145 EP - 1162 PB - Springer AN - OPUS4-50968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor A1 - Kornev, R. A1 - Bulanov, A. A1 - Ermakov, A. T1 - Laser-Induced Dielectric Breakdown as a Novel Method for Obtaining Isotopically Enriched Nanoscale Substances N2 - The possibility of obtaining high-purity, isotopically modified and nanostructured elemental substances 29Si, 98Mo, and 100Mo, as well as 98Mox10By compounds from volatile halides under conditions of laser optical breakdown of a pulsed Nd:YAG laser is shown. Currently, research in the field of developing new methods for obtaining high-purity, isotopically modified and nanostructured substances is being actively conducted. Interest in Si and Mo combining these forms has noticeably increased. In nuclear medicine, 29Si-enriched nanoparticles can be used as contrast agents in magnetic resonance imaging (MRI), and 98Mo and 100Mo isotopes can be used to obtain the unstable 99mTc radioisotope. These applications do not require large amounts of isotopically modified Si and Mo. Their obtaining belongs to the problems of small chemistry. When obtaining isotopically modified Si and Mo, it is expedient to use their volatile fluorides, for which technologies of isotope enrichment and deep purification are well developed. These halides have high chemical and thermal stability; therefore, plasma-chemical methods based on the plasma of a pulsed discharge generated by laser breakdown can be promising for separating 29Si, 98Mo, and 100Mo from them. Laser breakdown in H2+Ar+SiF4 and H2+Ar+MoF6 mixtures in various stoichiometric ratios in the pressure range 30–760 Torr was carried out using a pulsed Nd:YAG laser. The pulse duration at a wavelength of 1064 nm was 15 ns, the repetition rate was 5 Hz. A pulse energy of 800 mJ was focused by a lens with a focal length of 5 cm. The energy density at the focus was 26 J/cm3 . It has been shown that when using a mixture based on 29SiF4, the sample contains a 29Si crystalline phase with an average grain size of 30–50 nm (Fig. 1a). When using a mixture based on 98MoF6, the sample contains a 98Mo crystalline phase with an average grain size of 70–100 nm (Fig. 1b). In this type of gas discharge, the possibility of forming superhard materials, isotopically modified molybdenum borides, was also studied. These substances in the form of nanosized particles have improved tribological properties. After ablation of metallic Mo in the H2 + BF3 mixture, the main phase was MoB2 in the form of a nanodispersed powder with an average grain size of 100 nm (Fig. 1c) [1]. A technique for modeling gas-dynamic and thermal conditions in a low-temperature chemically active plasma induced by laser breakdown is proposed. Using computational experiments, the features of gas mixture heating and the formation of nanoparticles in the LIBS reactor were studied T2 - 17the International Conference on Laser Applications in Life Sciences CY - Mugla, Turkey DA - 15.10.2023 KW - Laser induced plasma KW - Chemical vapor deposition KW - Isotopically enriched nanomaterials PY - 2023 AN - OPUS4-58888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -