TY - JOUR A1 - Dümichen, Erik A1 - Javdanitehran, M. A1 - Erdmann, Maren A1 - Trappe, Volker A1 - Sturm, Heinz A1 - Braun, Ulrike A1 - Ziegmann, G. T1 - Analyzing the network formation and curing kinetics of epoxy resins by in situ near-infrared measurements with variable heating rates N2 - Near-infrared spectroscopy (NIR) turned out to be well suited for analyzing the degree of cure for epoxy systems. In contrast to dynamic scanning calorimetry (DSC), where the released heat of reaction determines the degree of epoxy conversion indirectly, NIR spectroscopy is able to determine the conversion directly by analyzing structural changes. Therefore, a new heatable NIR cell was equipped with an integrated thermocouple, which enables the real sample temperature to be controlled and monitored in situ during epoxy curing. Dynamic scans at different heating rates were used for kinetic modelling, to define kinetic parameters and to predict real curing processes. The kinetic models and their parameters were validated with an isothermal and a more complex multi-step curing scenario. Two available commercial epoxy systems based on DGEBA were used with an anhydride and with an amine hardener. NIR results were compared with DSC data. The simulated conversion predicted with a model fitted on the basis of NIR and DSC dynamic scans showed good agreement with the conversion measured in the isothermal curing validation test. Due to the proven reliability of NIR in measuring the reaction progress of curing, it can be considered a versatile measurement system for in situ monitoring of component production in the automotive, aerospace and wind energy sectors. KW - Epoxy resins KW - Curing kinetics KW - Near-infrared spectroscopy KW - DSC PY - 2015 U6 - https://doi.org/10.1016/j.tca.2015.08.008 SN - 0040-6031 SN - 1872-762X VL - 616 SP - 49 EP - 60 PB - Elsevier CY - Amsterdam AN - OPUS4-34187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Trappe, Volker A1 - Sturm, Heinz A1 - Braun, Ulrike A1 - Dümichen, Erik T1 - Cure conversion of structural epoxies by cure state analysis and in situ cure kinetics using nondestructive NIR spectroscopy N2 - Non-isothermal heating rate kinetics was applied to two epoxy resin systems. In situ near-infrared (NIR) measurements were taken with a heatable NIR cell which allowed the cure to be monitored by characteristic absorption bands. An autocatalyzed reaction of the nth order was shown to describe the epoxy conversion curves. Differential Scanning Calorimetry (DSC) was used as a complementary method. The kinetic models developed by both NIR and DSC are in good accordance with experimental epoxy conversion in the in situ NIR setup for single and multiple cure temperature ramps. A linear calibration curve of the characteristic absorption bands of epoxy normalized to aromatic vibrations was introduced. The curing degree of structural epoxies that were cured according to an industrial temperature cure profile was determined by NIR using the calibration curve. The epoxy conversions of the structural components showed good agreement with the experimental in situ NIR. Several degrees of cure for structural specimens were evaluated by NIR and residual reaction enthalpy by DSC. We present the non-destructive NIR spectroscopy as an alternative to determine fast and non-destructive epoxy conversion, particularly suitable for high degrees of cure on structural components. KW - Epoxy resin KW - Curing kinetics KW - In situ near-infrared (NIR) spectroscopy KW - Differential scanning calorimetry (DSC) PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0040603117300205 U6 - https://doi.org/10.1016/j.tca.2017.01.010 SN - 0040-6031 SN - 1872-762X VL - 650 SP - 8 EP - 17 PB - Elsevier B.V. AN - OPUS4-39123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -