TY - JOUR A1 - Brückner, Udo A1 - Link, T. A1 - Epishin, A. T1 - Moiré fringes for misfit measurements at incoherent y/y'-interfaces of nickel-base superalloys PY - 1998 U6 - https://doi.org/10.1016/S1359-6462(98)00337-6 SN - 0956-716X VL - 39 IS - 10 SP - 1463 EP - 1469 PB - Pergamon Press CY - Elmsford, NY AN - OPUS4-942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit ED - Maruyama, K. ED - Abe, F. ED - Igarashi, M. ED - Kishida, K. ED - Suzuki, M. ED - Yoshimi, K. T1 - Implementation of creep induced rafting into mechanical modelling of superalloys T2 - 12th International conference on creep and fracture of engineering materials and structures CY - Kyoto, Japan DA - 2012-05-27 KW - Single-crystal nickel-base superalloys KW - Microstructural degradation KW - Creep KW - Modelling KW - Rafting PY - 2012 SP - 1 EP - 4(?) AN - OPUS4-27564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klingelhöffer, Hellmuth A1 - Epishin, A. A1 - Link, T. A1 - Portella, Pedro Dolabella ED - Portella, Pedro Dolabella ED - T. Beck, ED - M. Okazaki, T1 - Low cycle fatigue of the single crystal nickel-base superalloy CMSX-4: anisotropy and effect of creep damage T2 - 6th International Conference on Low Cycle Fatigue (LCF 6) CY - Berlin, Germany DA - 2008-09-08 KW - Anisotropy of mechanical properties KW - Effect of creep damage on LCF KW - Single-crystal nickel-base superalloys PY - 2008 SP - 403 EP - 408 AN - OPUS4-17914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Künecke, Georgia A1 - Portella, Pedro Dolabella ED - Huron, E.S. ED - Reed, R.C. ED - Hardy, M.C. ED - Mills, M.J. ED - Montero, R.E. ED - Portella, Pedro Dolabella ED - Telesman, J. T1 - Rafting during high temperature deformation in a single crystal superalloy: experiments and modeling T2 - Superalloys 2012 - 12th International symposium on superalloys CY - Seven, Springs, PA, USA DA - 2012-09-09 KW - Creep KW - Single crystal KW - Rafting KW - Modeling KW - CMSX-4 KW - Low-cycle-fatigue PY - 2012 SP - 491 EP - 500 PB - Wiley AN - OPUS4-26842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Künecke, Georgia A1 - Portella, Pedro Dolabella T1 - Experimental characterization and mechanical modeling of creep induced rafting in superalloys N2 - A constitutive model has been developed for the high temperature mechanical behavior of single crystal superalloys, including rafting and its consequences. The flow stress depends on the γ channel width via the Orowan stress. An evolution equation for channel widening during high temperature straining has been derived and calibrated with measurements. Therein, rafting is assumed to be driven by the relaxation of internal stresses. The model is able to represent the mechanical softening at high stresses consecutive to rafting. The model has been applied to simulate rafting during uniaxial creep in several crystal orientations, in notched specimens as well as in cyclically loaded specimens. KW - Single crystal KW - Superalloys KW - Rafting KW - Creep KW - Viscoplasticity KW - Constitutive law PY - 2012 U6 - https://doi.org/10.1016/j.commatsci.2012.05.071 SN - 0927-0256 VL - 64 SP - 2 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-26401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Link, T. A1 - Feldmann, Titus A1 - Svetlov, I.L. T1 - Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling N2 - Pore annihilation during hot isostatic pressing (HIP) was investigated in the single-crystal nickel-base superalloy CMSX-4 experimentally by interrupted HIP tests at 1288 °C/103 MPa. The kinetics of pore annihilation was determined by density measurement and quantitative metallography. Transmission electron microscopy of a HIPed specimen showed that the pores shrink via dislocation movement on octahedral glide planes. Theoretically pore closure under HIP condition was modelled by the finite element method using crystal plasticity and large strain theories. The modelling gives a similar kinetics of pore annihilation as observed experimentally, however somewhat higher annihilation rate. KW - Nickel based superalloys KW - Electron microscopy KW - Crystal plasticity KW - Bulk deformation KW - Finite element method PY - 2013 U6 - https://doi.org/10.1016/j.msea.2013.08.034 SN - 0921-5093 SN - 1873-4936 VL - 586 SP - 342 EP - 349 PB - Elsevier CY - Amsterdam AN - OPUS4-29418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Svetlov, I. L. A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Gerstein, G. A1 - Nolze, Gert A1 - Maier, H. J. T1 - Creep of Directionally Solidified Eutectics Ni/Ni3 Al–NbC under Thermal Cycling N2 - A nickel-based eutectic alloy with a γ/γ'-NbC structure was directionally solidified with a planar front. The specimens were tested for creep under sawtooth thermal cycling in the temperature range from 600 to 1100°C. It has been established that the lifetime under the conditions of thermal cycling is about five times shorter than it is predicted by the linear damage accumulation rule on the basis of results of isothermal creep tests. Faster creep under thermal cycling is caused by the rapid coarsening of the γ/γ' microstructure due to the periodic partial dissolution and reprecipitation of the γ' phase in heating and cooling half-cycles. KW - High temperature nickel-based eutectic alloys KW - γ/γ' matrix KW - Carbide phase NbC KW - In-situ composites KW - Creep under thermal cycling PY - 2022 U6 - https://doi.org/10.1134/S2075113322040347 SN - 2075-1133 VL - 13 IS - 4 SP - 1099 EP - 1108 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A.I. A1 - Nolze, Gert A1 - Alymov, M.I. T1 - Pore Morphology in Single Crystals of a Nickel-Based Superalloy After Hot Isostatic Pressing N2 - The morphology of pores partially shrunk during a half-hour HIP at temperature of 1288 °C and pressure of 103 MPa has been investigated in nickel-based superalloy CMSX-4. The investigation resulted in the following findings: surrounding the shrinking pores by a c¢-shell (Ni3Al), faceting of the pores surface by {023} and {011} planes, and formation the submicroscopic satellite pores connected by channels with the neighboring larger pores. It is assumed that the formation of the c¢-shell around the pores and the faceting of the pore surface is due to diffusion processes occurring during pore shrinkage, and therefore these findings can be considered as arguments supporting the vacancy model of pore annihilation. The submicroscopic satellite pores are expected to be the result of dividing the casting pores of a complex initial shape during their shrinking. The connecting channels are probably required for the gas to escape from the rapidly shrinking small satellite pores into the slowly shrinking large pore. Thus, it is reasonable to assume that the casting pores may contain some amount of gas. KW - HIP KW - Superalloy KW - Porosity KW - Faceting KW - negative crystal growth PY - 2022 U6 - https://doi.org/10.1007/s11661-022-06893-x SN - 1073-5623 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-56409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruffini, A. A1 - Le Bouar, Y. A1 - Finel, A. A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Viguier, B. A1 - Poquillon, D. T1 - Dislocations interacting with a pore in an elastically anisotropic single crystal nickel-base superalloy during hot isostatic pressing N2 - The formation of pores in CMSX-4 nickel based superalloys is detrimental to the service life of the material. A way to avoid the problem is to treat the superalloys under Hot Isostatic Pressing (HIP), which enables a large volume fraction of pores to be annihilated. This paper aims to understand the contribution of plastic activity related to the gliding of dislocations on the pore annihilation. Simulations based on a phase-field model of dislocation are performed and make it possible to consider the strong anisotropy of the CMSX-4 under HIP conditions in conjunction to the strong elastic heterogeneity introduced by the pore. For pores with a radius of few micrometers, it is shown that edge parts of dislocation lines that present an extra half atomic plane oriented towards the pore are stacked above and under it in the direction which is perpendicular to their slip-planes, causing an increase of the number of dislocation along the four octahedral directions of the FCC single crystal which intersect the pore center. Results are streamlined within the isotropic elastic theory of dislocations. Effects of elastic anisotropy and dislocation reactions are also investigated in order to specify what would be the dislocation configuration around a pore in CMSX-4 under HIP conditions. Notably, the elastic anisotropy is shown to significantly modify the arrangement of dislocations close to the pore equator. Simulations also allow for the characterization of pore/dislocation interactions when dislocations are involved in Low Angle Boundaries as experimentally observed. KW - HIP KW - Superalloys KW - Dislocation KW - Pore KW - Phase-field PY - 2022 U6 - https://doi.org/10.1016/j.commatsci.2021.111118 SN - 0927-0256 VL - 204 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-54220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Malakhov, A. A1 - Epishin, A. A1 - Denisov, I. A1 - Saikov, I. A1 - Nolze, Gert T1 - Morphology and Structure of Brass–Invar Weld Interface after Explosive Welding N2 - This paper presents the results of a study of the morphology and structure at the weld interface in a brass–Invar bimetal, which belongs to the class of so-called thermostatic bimetals, or thermobimetals. The structure of the brass–Invar weld interface was analyzed using optical microscopy and scanning electron microscopy (SEM), with the use of energy-dispersive X-ray (EDX) spectrometry and back-scattered electron diffraction (BSE) to identify the phases. The distribution of the crystallographic orientation of the grains at the weld interface was obtained using an e-Flash HR electron back-scatter diffraction (EBSD) detector and a forward-scatter detector (FSD). The results of the study indicated that the weld interface had the wavy structure typical of explosive welding. The wave crests and troughs showed the presence of melted zones consisting of a disordered Cu–Zn–Fe–Ni solid solution and undissolved Invar particles. The pattern quality map showed that the structure of brass and Invar after explosive welding consisted of grains that were strongly elongated towards the area of the highest intensive plastic flow. In addition, numerous deformation twins, dislocation accumulations and shear bands were observed. Thus, based on the results of this study, the mechanism of Cu–Zn–Fe–Ni structure formation can be proposed. KW - Explosive welding KW - Thermobimetal KW - Grain structure KW - Brass KW - Invar PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565964 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 10 PB - MDPI AN - OPUS4-56596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, I. A. A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - Experimental Determination of Temperature Dependence of Structural–Phase Parameters of Nickel-Based Superalloy N2 - The temperature dependences of the periods of the crystal lattices of the γ and γ' phases, their dimensional mismatch (misfit), and volume fraction of the γ' phase of an experimental single-crystal hightemperature nickel-based alloy have been determined by X-ray diffraction analysis in the temperature range of 18–1150°C. The temperature ranges in which intense changes in the structural and phase characteristics of the alloy under study take place have been determined. KW - X-ray diffraction analysis KW - High temperatures KW - Nickel-based superalloys KW - Single crystal KW - Crystal lattice period PY - 2022 U6 - https://doi.org/10.1134/s2075113322010373 SN - 2075-1133 VL - 13 IS - 1 SP - 171 EP - 178 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-54466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, A. T1 - Simulation of Hot Isostatic Pressing in a Single-Crystal Ni Base Superalloy with the Theory of Continuously Distributed Dislocations Combined with Vacancy Diffusion N2 - Single-crystal components made of nickel base superalloys contain pores after casting and homogenization heat treatment. Hot isostatic pressing (HIP), which is carried above the γ' -solvus temperature of the alloy, is industrially applied to reduce porosity. A modeling of HIP based on continuously distributed dislocations is developed in a 2D setting. Glide and climb of straight-edge dislocations, as well as vacancy diffusion, are the deformation mechanisms taken into account. Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and climb is controlled by vacancy diffusion. Relying on previous investigations of the creep behavior at HIP temperatures, it is assumed that new dislocations are nucleated at low-angle boundaries (LAB) and move through subgrains until they either reach the opposite LABs or react with other dislocations and annihilate. Vacancies are created at the pore surface and diffuse through the alloy until they are either consumed by climbing dislocations or disappear at the LABs. The field equations are solved by finite elements. It is shown that pore shrinking is mostly controlled by vacancy diffusion as the shear stresses at the LABs are too low to nucleate a sufficient amount of dislocations. KW - Nickel-base superalloys KW - HIP KW - Dislocation KW - Creep KW - Model PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542309 VL - 2022 PB - Wiley AN - OPUS4-54230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Svetlov, I. L. A1 - Nolze, Gert T1 - Model for Forecasting Temperature Dependence of γ/γ' Misfit in Heat-Resistant Nickel Alloys N2 - An analytical model for forecasting the temperature dependence of γ/γ' misfit in heat-resistant nickel alloys is proposed. The model accounts for the concentration dependences of the periods of crystalline lattices of the γ and γ' phases (Vegard law), thermal expansion of the γ and γ' lattices, and dissolution of the γ' phase at high temperatures. Adequacy of calculations of misfit is confirmed by comparison with the results of measurements using methods of X-ray and neutron diffraction. The model is applied for development of a nickel alloy with positive misfit. KW - Heat-resistant nickel alloys KW - Dimensional mismatch of crystalline lattice periods (misfit) KW - Microstructure evolution PY - 2022 U6 - https://doi.org/10.1134/S2075113322010105 SN - 2075-1133 VL - 13 IS - 1 SP - 7 EP - 16 PB - Springer AN - OPUS4-54379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Fedelich, Bernard A1 - Viguier, B. A1 - Schriever, Sina A1 - Svetlov, I. L. A1 - Petrushin, N. V. A1 - Saillard, R. A1 - Proietti, A. A1 - Poquillon, D. A1 - Chyrkin, A. T1 - Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C N2 - A γ-analogue of the superalloy CMSX-4 that does not contain the strengthening γ′ -phase and only consists of the γ-solid solution of nickel has been designed, solidified as single-crystals of different orientations, and tested under creep conditions in the temperature range between 1150 and 1288 °C. The tests have revealed a very high creep anisotropy of this alloy, as was previously found for CMSX-4 at supersolvus temperature of 1288 °C. This creep anisotropy could be explained by the dominance of 〈011〉{111} octahedral slip. Furthermore, the analysis of the creep data has yielded a high value of the creep activation energy, Qc≈442 kJ/mol, which correlates with the high activation energy of Re diffusion in Ni. This supports the hypothesis that dislocation motion in the γ-matrix of Re-containing superalloys is controlled by the diffusion of the Re atoms segregating at the dislocation core. The Norton stress exponent n is close to 5, which is a typical value for pure metals and their alloys. The absence of γ′ -reprecipitation after high-temperature creep tests facilitates microstructural investigations. It has been shown by EBSD that creep deformation results in an increasing misorientation of the existing low angle boundaries. In addition, according to TEM, new low angle boundaries appear due to reactions of the a/2 〈011〉 mobile dislocations and knitting of new networks. KW - Nickel alloys KW - Single-crystals KW - Creep KW - Electron microscopy KW - Deformation mechanisms PY - 2021 U6 - https://doi.org/10.1016/j.msea.2021.141880 SN - 0921-5093 VL - 825 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520972 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Chyrkin, A. A1 - Nolze, Gert T1 - Synchrotron Sub-μ X-ray Tomography of Kirkendall Porosity in a Diffusion Couple of Nickel-Base Superalloy and Nickel after Annealing at 1250 °C N2 - Kirkendall porosity that forms during interdiffusion in a diffusion couple of nickel-base superalloy CMSX-10 with pure nickel is investigated. The diffusion experiments are conducted at a temperature of 1250 °C, where the strengthening ƴ'-phase ist partially dissolved. The porosity is studied by X-ray sub-μ tomography with a spatial resolution of about 0.35³ μm³ at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It is found that depending on the distance from the interface the Kirkendall pores take different shapes: octahedral, rounded pyramidal, drop shaped, dendritic, pear shaped, and joint shapes. Such a variety of pore morphologies indicates a complex multistage process of porosity nucleation and growth under vacancy supersaturation of different degrees. The experimental findings are interpreted on the basis of the results of diffusion modeling. It is shown that the kinetics of porosity growth is essentially influenced by the dissolution of the ƴ'-phase. KW - Diffusion KW - Nickel alloys KW - Porous materials KW - Synchrotron radiations KW - Three-dimensional tomographies PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521476 VL - 23 IS - 4 SP - 1220 PB - Wiley Online Library AN - OPUS4-52147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Heuser, M. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. A1 - Fedelich, Bernard T1 - Refinement and Experimental Validation of a Vacancy Model of Pore Annihilation in Single-Crystal Nickel-Base Superalloys during Hot Isostatic Pressing N2 - Initially, as-cast and homogenized single crystals of nickel-base superalloy CMSX-4 are subjected to hot isostatic pressing at 1288 °C. Two series of experiments are conducted: under the same pressure of 103 MPa but with different durations, between 0.5 and 6 h, and under different pressures, between 15 and 150 MPa, but for the same time of 0.5 h. The porosity annihilation is investigated metallographically and by high-resolution synchrotron X-ray tomography. The obtained experimental results are compared with the predictions of the vacancy model proposed recently in the group. Herein, the model is further refined by coupling with X-ray tomography. The model describes the evolution of the pore arrays enclosed in the 3D synchrotron tomograms during hot isostatic pressing and properly predicts the time and stress dependences of the pore annihilation kinetics. The validated model and the obtained experimental results are used for selecting the optimal technological parameters such as applied pressure and processing time KW - Superalloys KW - HIP KW - Single-Crystal KW - Diffusion PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-526859 VL - 23 IS - 7 SP - 211 AN - OPUS4-52685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yukhvid, V. A1 - Gorshkov, V. A1 - Miloserdov, P. A1 - Skachkova, N. A1 - Alymov, M. I. A1 - Nolze, Gert A1 - Epishin, A. T1 - Synthesis of Molybdenum and Niobium Mono- and Binary Silicides by the Method of SHS-Metallurgy N2 - The process of self-propagating high-temperature synthesis of the Mo–Nb–Si silicides from the powder mixtures has been investigated. Based on performed experiments, the composition of powder mixtures as well as technological parameters are proposed which provide the synthesis of monosilicides MoSi₂, NbSi₂, and binary silicides Mo₁-хNbxSi₂ with different ratios of Nb/Mo by adding different contents of MoO₃ and Nb₂O₅. Microstructure and phase compositions of the obtained silicide ingots are characterized by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and backscatter electron diffraction. KW - Synthesis KW - EBSD KW - XRD PY - 2016 U6 - https://doi.org/10.1002/adem.201600334 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 6 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Fedelich, Bernard A1 - Svetlov, I.L. A1 - Golubovskiy, E.R. T1 - Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties N2 - Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength. T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications CY - Giens, France DA - 12.05.2014 PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-316410 N1 - Serientitel: MATEC Web of conferences – Series title: MATEC Web of conferences VL - 14 SP - 08003-1 EP - 08003-6 PB - EDP Sciences AN - OPUS4-31641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Künecke, Georgia A1 - Epishin, A. A1 - Link, T. A1 - Portella, Pedro Dolabella T1 - Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys N2 - A constitutive model for the mechanical behaviour of single-crystalline superalloys at high temperatures has been developed. The model relies on the slip system theory and is able to predict rafting and its influence on plastic flow. The kinetics of rafting are assumed to be driven by the reduction of the internal stresses represented by the macroscopic back-stress. The rafting effect is incorporated in the model through the dependence of the Orowan stress on the channel width. The model has been validated for the alloy CMSX-4 at 950 °C. The rafting part of the model has been calibrated by measurements of the channel widths after several levels of creep strains and for several loads. KW - Single crystal superalloy KW - Creep KW - Rafting KW - Constitutive modelling KW - Viscoplasticity PY - 2009 U6 - https://doi.org/10.1016/j.msea.2008.04.089 SN - 0921-5093 SN - 1873-4936 VL - 510-511 SP - 273 EP - 277 PB - Elsevier CY - Amsterdam AN - OPUS4-19353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Klingelhöffer, Hellmuth A1 - Fedelich, Bernard A1 - Brückner, Udo A1 - Portella, Pedro Dolabella T1 - New technique for characterization of microstructural degradation under creep: Application to the nickel-base superalloy CMSX-4 N2 - A new experimental technique (repeated load annealing of flat wedge shaped specimens) was proposed for characterization of microstructural degradation under creep conditions. This technique was applied to investigate the microstructural degradation of the nickel-base superalloy CMSX-4 in a wide range of temperatures and stress levels. The results obtained allowed to describe analytically the kinetics of rafting, which is important to predict the reduction of fatigue lifetime and yield stress. KW - Microstructural degradation KW - Nickel-base superalloys KW - Rafting PY - 2009 U6 - https://doi.org/10.1016/j.msea.2008.04.135 SN - 0921-5093 SN - 1873-4936 VL - 510-511 SP - 262 EP - 265 PB - Elsevier CY - Amsterdam AN - OPUS4-19354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Brückner, Udo A1 - Link, T. A1 - Fedelich, Bernard T1 - X-ray reflections from the Gamma/Gamma'-microstructure of nickel-base superalloys: effect of the plane tilting N2 - The shape of X-ray reflections from the cuboidal γ/γ'-microstructure was investigated. The measurements were performed on the 4th generation single-crystal nickel-base superalloy TMS138. It is shown that reflections from non-cubic crystallographic planes split not only in d-scale due to the different spacing of the γ- and γ'-lattices but also in the pole figure due to the tilting of γ-lattice planes. This tilting results from the elastic distortion of the γ-lattice caused by the γ/γ'-misfit. The results obtained are discussed under the methodical aspect of misfit measurement. KW - Nickel-base alloys KW - X-ray diffraction KW - Lattice distortion PY - 2010 U6 - https://doi.org/10.3139/146.110315 SN - 1862-5282 VL - 101 IS - 5 SP - 589 EP - 593 PB - Carl Hanser CY - München AN - OPUS4-21512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Link, T. A1 - Epishin, A. A1 - Fedelich, Bernard T1 - Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocatiion loops N2 - It is shown experimentally that, during annealing and creep under low applied stresses, matrix dislocation loops frequently cross-glide. The periodic length of the zigzag dislocations deposited in the interfaces is equal to that of the γ/γ'-microstructure. Initially, the zigzag dislocations move in the (001) interface by a combination of glide and climb but then they stop near the γ'-edges and align along (100). Reactions of such dislocations lead to the formation of square interfacial networks consisting of (100) oriented edge dislocations. The complex dislocation movement is explained by the inhomogeneity of the misfit stresses between γ- and γ'-lattices. The tensile components of the stress tensor drive the dislocations through the channel, whereas the shear components near the γ'-edges cause the zigzag movement and the (100) alignment. The total effect is the most efficient relaxation of the misfit stresses. The results are relevant, especially for single-crystal superalloys of the newest generations, which have an increased γ/γ'-misfit due to the high level of refractory elements. KW - Superalloy KW - Creep KW - Dislocation KW - Misfit stress PY - 2009 U6 - https://doi.org/10.1080/14786430902877810 SN - 1478-6435 SN - 0031-8086 VL - 89 IS - 13 SP - 1141 EP - 1159 PB - Taylor & Francis CY - London AN - OPUS4-19522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Lucas, H. T1 - Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys N2 - Several mechanisms for porosity growth in single crystal nickel-based superalloys during homogenisation heat treatment have been proposed in the literature. They were carefully checked using different experimental methods, namely quantitative light microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and density measurements. It is shown that the main mechanism is the Kirkendall–Frenkel effect, i.e. generation of voids due to uncompensated efflux of Al atoms from dissolving γ/γ′-eutectic areas. The Al diffusion is supported by the afflux of vacancies from surrounding γ-matrix which results in porosity growth. This conclusion is confirmed by the estimation of the vacancy afflux towards the dissolving eutectic. KW - Ni-base superalloy KW - Eutectic KW - Vacancies KW - Porosity PY - 2013 VL - 104 IS - 8 SP - 776 EP - 782 PB - Carl Hanser Verlag AN - OPUS4-37983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Bokshtein, B. S. A1 - Rodin, A. O. A1 - Saliwan Neumann, Romeo A1 - Oder, Gabriele T1 - Diffusion processes in multicomponent nickel-base superalloy-nickel system N2 - Optical and scanning electron microscopy, as well as electron microprobe analysis and electron backscatter diffraction, have been used to study diffusion processes that occur in a diffusion pair that consistsof a single-crystal CMSX-10 nickel-base superalloy and polycrystalline nickel, at temperatures of 1050–1250°C. It has been found that, in this system, the distributions of γ-stabilizing elements (Cr, Co, W, and Re) are described by the Boltzmann solution for diffusion between two semiinfinite plates of a binary alloy. The processing of these distributions has shown that the diffusion coefficients of Cr, Co, W, and Re in the multicomponent system are close to those in binary alloys of these elements with Ni. The diffusion redistribution of the elements leads to the dissolution of the γ′ phase in the nickel-base superalloy, growth of nickel grains toward the superalloy constituent of the diffusion pair, and the formation of porosity on both sides of the migrating interface, which is determined from a crystal misorientation of the alloy single crystal and nickel grains. KW - Ni-base superalloy KW - Interface KW - Diffusion KW - Phase transformation KW - Porosity PY - 2014 SN - 0031-918X VL - 115 IS - 1 SP - 21 EP - 29 AN - OPUS4-37980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 U6 - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Nolze, Gert T1 - SEM investigation of interfacial dislocations in nickel-base superalloys N2 - A new technique for investigation of interfacial dislocations in nickel-base superalloys by scanning electron microscopy is presented. At high temperatures the pressure of interfacial dislocations against the gamma/gamma'-interface causes grooves. This 'fingerprint of the dislocation network' is visualized by deep selective etching, which removes the gamma'-phase down to the gamma/gamma'-interface. Compared with transmission electron microscopy, the proposed method has important advantages: observation of large sample areas, no superposition of dislocations lying in different specimen depths, possibility of three-dimensional view of dislocation configurations, information about the dislocation mobility, reduced time for preparation and visualization. The method can be applied for multiphase materials where the interface is grooved by interfacial dislocations. KW - Dislocation structure KW - Interface KW - Nickel alloys KW - SEM PY - 2007 VL - 228 IS - 2 SP - 110 EP - 117 PB - The Royal Microscopical Society AN - OPUS4-38016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Nolze, Gert T1 - Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys N2 - The competitive growth of columnar grains in a single-grain selector, which is used for directional solidification of single-crystal blades from nickel-based superalloys, has been investigated by electron backscattered diffraction and local X-ray diffraction analysis. It has been found that the competitive grain growth in a starter block is determined by the crystallographic factor: rapidly growing grains with the axial orientation close to the [001] direction dominate in this part of the casting. For the competitive grain growth in a helicoidal separator, the geometric factor (the position of a grain at the input of the separator) is also important. The results obtained suggest that an appropriate geometry of the single-grain selector was chosen. In addition, the distribution of the orientations of columnar grains obtained by electron backscattered diffraction, can be used for approximate estimation of the yield of suitable (i.e., with the deviation of the axial orientation from the [001] direction within a specified tolerance) single-crystal blades. KW - Electron backscatter diffraction KW - Single crystal KW - Growth competition KW - Nickel alloy PY - 2006 U6 - https://doi.org/10.1134/S1063774506040298 SN - 1063-7745 SN - 1562-689X VL - 51 IS - 4 SP - 710 EP - 714 AN - OPUS4-38028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrushin, N. A1 - Hvatzkiy, K. A1 - Gerasimov, V. A1 - Link, T. A1 - Epishin, A. A1 - Nolze, Gert A1 - Gerstein, G. T1 - A single-crystal co-base superalloy strengthened by gamma' precipitates: structure and mechanical properties N2 - An experimental Co-base superalloy was designed from the Ni-base system by exchange of Ni and Co concentrations. The alloy consist of a Co-matrix (γ phase) strengthened by cuboidal precipitates Co3(Al,X) (γ' phase). The γ'-solvus temperature is 1?005?°C. [001] single crystals of this alloy were solidified and tested for tension at different temperatures up to 1?000?°C. It was found that the Co-base alloy has a much lower yield stress than a corresponding Ni-base alloy, but a much higher ductility. The partitioning behaviour of the alloying elements in the Co-base alloy and the deformation mechanisms were investigated by scanning and transmission electron microscopy. KW - Microstructure KW - Precipitation KW - Stress PY - 2015 U6 - https://doi.org/10.1002/adem.201500088 SN - 1438-1656 VL - 17 IS - 6 SP - 755 EP - 760 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-34474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Schriever, Sina T1 - Creep behaviour of the single-crystal nickel-base superlaloy CMSX-4 at ultra-high homologous temperature T2 - 13th Conference On Creep and Fracture of Engineering Materials and Structures CY - Toulouse DA - 2015-05-31 PY - 2015 AN - OPUS4-34095 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Midtlyng, Jan A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Reimers, W. T1 - Creep behavior of a γ΄-strengthened Co-base alloy with zero γ/γ΄-lattice misfit at 800 °C, 196 MPa N2 - Deformation and structural behavior of an experimental γ΄-strengthened Co-base alloy during creep at 800 °C and 196 MPa have been investigated. The characteristic features of this alloy are zero γ/γ΄-lattice misfit and a fine γ/γ΄-microstructure. In the initial condition, the γ΄-precipitates in this alloy are small (size of about 100 nm), have polyhedral morphology, and are separated by the very narrow c-channels (width of about 10 nm). The tests performed up to about 1% creep strain (about 500 h creep time) gave creep curves with a slow constant strain rate and without an apparent transient creep, typical for superalloys with nonzero misfit. In this initial stage of creep, entering of the narrow γ-channels by dislocations is blocked by a strong Orowan force. The micromechanism of creep was identified as an octahedral glide of h011i superdislocations simultaneously in two phases, γ and γ΄. The γ/γ΄-microstructure with zero misfit shows no rafting but rapidly coarsens isotropically. It is concluded that zero misfit is beneficial at the initial stages of the creep but is unfavourable for longterm creep because of the continuous microstructural coarsening. KW - Co-Basis-Legierung KW - Gitterfehlpassung KW - Kriechen KW - Ausscheidung PY - 2017 U6 - https://doi.org/10.1557/jmr.2017.424 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4466 EP - 4474 PB - Cambridge Univ. Press CY - Cambridge AN - OPUS4-44027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Petrushin, N. A1 - Gerstein, G. A1 - Maier, J. A1 - Nolze, Gert T1 - Investigation of the gamma'-strengthened quaternary co-based alloys Co-Al-W-Ta N2 - The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the γ‘-solvus, solidus, and liquidus temperatures; fraction of the extrinsic phases after casting; the compositional dependence of the γ/γ‘-lattice misfit; the element partitioning between γ- and γ‘-phases; and the two Phase compositional area γ/γ‘ in the Co-rich part of the Co-Al-W-Ta phase diagram at 900°C. It is shown that additions of Ta elevate the γ‘-solvus temperature and increase the γ/γ‘-lattice misfit, but adding more than about 3 at. pct Ta results in a large amount of undissolvable extrinsic phases. Additionally, two Co-Al-W-Ta alloys with lower content of W were developed and solidified as [001] single crystals for mechanical testing in a temperature range between 20 and 1200°C. These tests included measurement of the Young modulus, tensile tests with constant strain rate, and stress rupture tests. It was found that at temperatures up to about 750°C the ultimate tensile strength of Co-Al-Ta-W alloys can be at the same level or even higher than of Ni-based superalloys. KW - Cobald based alloy KW - Microstructur KW - Segregation PY - 2018 U6 - https://doi.org/10.1007/s11661-018-4756-3 SN - 1543-1940 SN - 1073-5623 VL - 49A IS - 9 SP - 4042 EP - 4057 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Chyrkin, A. A1 - Nolze, Gert A1 - Midtlyng, Jan A1 - Mayer, H. M. A1 - Petrushin, N. A1 - Reimers, W. T1 - Interdiffusion in the Face-Centered Cubic Phase of the Co-Al-W-Ta System Between 1090 and 1240 °C N2 - Interdiffusion of Al, W, Ta and Co in a Co-base alloy at temperatures between 1090 and 1240 °C has been investigated. The interdiffusion coefficients were found to be close to those reported for these elements in Ni-base alloys. Combining the diffusion simulation software DICTRA with the Ni-base diffusion databases TCNi5 and MobNi3, the interdiffusion profiles of Co, Al W, and Ta were modeled for Co9Al8W2Ta/Co diffusion couples annealed at different temperatures and for different times. The results show that interdiffusion in the Co-Al-W-Ta alloys can be modeled reasonably well using the available commercial databases for thermodynamics and kinetics of Ni-base systems. KW - Alloys KW - Interdiffusion KW - Modeling PY - 2018 U6 - https://doi.org/10.1007/s11669-018-0620-9 VL - 39 IS - 2 SP - 176 EP - 185 PB - Springer AN - OPUS4-44463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Bokstein, B. A1 - Svetlov, I. A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. A1 - Viguier, B. A1 - Poquillon, D. T1 - A vacancy model for pore annihilation during hot isostatic pressing of single-crystal nickel-base superalloys N2 - An improved diffusion model is proposed for pore annihilation during HIP of single-crystal nickel-base superalloys. The model assumes the pore dissolution by emission of vacancies and their sink to the low angle boundaries. Calculation, considering distribution of the pore sizes, predicts the kinetics of pore annihilation similar to the experimental one. KW - Single crystal superalloys KW - Hot isostatic pressing (HIP) KW - Porosity KW - Diffusion KW - Vacancies PY - 2018 U6 - https://doi.org/10.1134/S2075113318010100 SN - 2075-1133 VL - 9 IS - 1 SP - 57 EP - 65 PB - Pleiades Publishing, Ltd. AN - OPUS4-43990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chyrkin, A. A1 - Epishin, A. A1 - Pillai, R. A1 - Link, T. A1 - Nolze, Gert A1 - Quaddaker, W. J. T1 - Modeling interdiffusion processes in CMSX-10/Ni diffusion couple N2 - A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the c¢-Ni3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity. KW - Chemical potential KW - Diffusion KW - EBSD KW - Composition profiles KW - DICTRA modeling KW - Electron probe microanalysis KW - EPMA PY - 2016 U6 - https://doi.org/10.1007/s11669-015-0444-9 SN - 1547-7037 VL - 37 IS - 2 SP - 201 EP - 211 PB - Springer AN - OPUS4-35776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Schriever, Sina T1 - Creep behaviour of the single-crystal nickel-base superalloy CMSX-4 at ultra-high homologous temperature N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, Investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of single-crystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HlPed at temperatures between y'-solvus and solidus where superalloy has no strengthening y'-phase and therefore is very soft. For example, the Company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288aC, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Therefore knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIP as well as to plan the Parameters of the HIP process. T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures CY - Toulouse, France DA - 31.5.2015 PY - 2015 VL - 825 SP - 19 EP - 20 AN - OPUS4-33527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Haftaoglu, Cetin A1 - Nolze, Gert A1 - Schriever, Sina A1 - Epishin, A. A1 - Camin, B. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. T1 - Untersuchung des Kriechverhaltens einer Nickelbasis-Superlegierung bei ultrahohen homologen Temperaturen und Anwendung auf das heiß-isostatische Pressen (HIP) N2 - Mit Hilfe des HIP-Verfahrens („Hot Isostatic Pressing“) werden Poren in der einkristallinen Nickel-Basis Superlegierung CMSX-4 kontinuierlich geschrumpft und dadurch die nach der Erstarrung und der Wärmebehandlung vorhandene Porosität stark reduziert. In diesem Beitrag werden experimentelle und numerische Untersuchungen zu den Mechanismen der Porenschrumpfung zusammengefasst. Es zeigt sich, dass das Verformungsverhalten während Kriechversuchen bei der HIP-Temperatur durch Versetzungsgleitung auf oktaedrischen Ebenen dominiert wird. Dagegen zeigen Messungen der Porositätsabnahme und Simulationen des Porenschließens, dass die Kinetik der Porenschrumpfung durch das Phänomen der Leerstellendiffusion zwischen Poren und Kleinwinkelkorngrenzen („Low Angle Boundary“, LAB) bestimmt wird. Im Gegensatz führt die klassische Kristallviskoplastizität zu einer systematischen Überschätzung dieser Kinetik. Der scheinbare Widerspruch lässt sich auflösen, wenn man bedenkt, dass auf der Skala der Poren Versetzungsquellen nicht gleichmäßig verteilt sind, wie in der konventionellen Kristallplastizität implizit angenommen wird. Stattdessen wird in einem weiterführenden Modell davon ausgegangen, das Kleinwinkelkorngrenzen (LABs) als Versetzungsquellen fungieren, während die Scherspannungen sehr stark in der Nähe der Poren lokalisiert sind, was die Emission von Versetzungen deutlich reduziert. T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Online meeting DA - 27.11.2020 KW - HIP KW - Superlegierung KW - Kriechen PY - 2020 SN - 978-3-946885-95-5 VL - 2020 SP - 28 EP - 39 PB - Forschungsvereinigung Warmfeste Stähle und Hochtemperaturwerkstoffe AN - OPUS4-51796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 U6 - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Link, T. A1 - Nolze, Gert A1 - Feldmann, Titus A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of the single-crystal nickel-base superalloy CMSX-4 at a super-solvus temperature N2 - Data about the creep of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, investigation of creep at higher temperatures has usually no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of single-crystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HIPed at temperatures above GammaP-solvus where superalloy has no strengthening GammaP-phase and therefore is very soft. E.g., the company Howmet Castings hips the superalloy CMSX-4 at 1288°C, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Knowledge about the creep of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIP. CMSX-4 single-crystals of [001] orientation and few single-crystals of different orientations, [011], [123] and [111], were tested under creep conditions at 1288°C in the stress range between 4 and 16 MPa. At this temperature which is above the GammaP-solvus (for CMSX-4 1280°C) the superalloy has single phase structure representing the Gamma-solid solution of nickel strengthened by solute atoms. On creep curves of CMSX-4 single-crystals of different orientations measured at 1288°C/10 MPa it is seen that despite such a high homological temperature, 0.97, CMSX-4 shows very high anisotropy of creep rate. The average creep rate of [001] single-crystal in the range 0-30% strain is about 11.5 time faster than that for [111], a ratio, which is even higher than at the practically relevant temperatures 750-1100°, see e.g.. Approximation the strain rate – stress dependence by the Norton power law gave a stress exponent n of about 6 which is an indication of dislocation creep. The specimen shape after testing, analysis of traces of plastic deformation by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) investigations indicate on dislocation slip on the octahedral system <011>{11-1}.This result however does not support the current doctrine that at high temperatures creep of metals and alloys are climb controlled. It is concluded from the obtained results that even at such a high homologous temperature, 0.97, dislocation movement by slip is more preferable than by climb if only relatively week obstacles are present like solute atoms and low angle boundaries (LABs). It is remarkable that under used testing conditions the necking and recrystallization behavior of differently oriented single-crystals is very different. E.g., the [001] single-crystal showed very large local strain during necking, Phi=99.8%, and no recrystallization (see Fig. 3a), while the [111] single-crystal small necking, Phi=62%, accompanied by recrystallization. Such a specific deformation and recrystallization has to be undestood. The obtained creep data of CMSX-4 was introduced in a finite element model in order to simulate pore closure during commercial HIP at a temperature of 1288°C. T2 - International Conference on Creep and Fracture of Engineering Materials and Structures CY - Saint Petersburg, Russia DA - 19.06.2017 KW - Creep KW - Superalloy KW - CMSX4 KW - Hot isostatic pressing (HIP) KW - Single crystal PY - 2017 AN - OPUS4-40903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. A1 - Solov'ev, A. E. T1 - Influence of the Sign of the γ/γ' Misfit on the Structure and Creep Strength of Single Crystals of Nickel-Based Superalloys N2 - Using the method of directional solidification, single crystals of experimental nickel-based superalloys with negative, zero, and positive γ/γ' misfits are obtained. The γ' solvus, solidus, and liquidus temperatures of the alloys are determined, and the microstructures of the alloys after directional solidification, heat treatment, and creep tests are investigated. Creep tests are performed at temperatures of 800 and 1000°C. It is found that single crystals of the alloy with a negative γ/γ' misfit have the highest creep resistance and lifetime (the crystal lattice period of the γ' phase is smaller than that of the γ matrix). KW - Nickel-based superalloys KW - Single crystal KW - Creep KW - Creep strength KW - Microstructure, γ/γ' misfit PY - 2023 U6 - https://doi.org/10.1134/s207511332301029x SN - 2075-1133 VL - 14 IS - 1 SP - 13 EP - 22 AN - OPUS4-59505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -