TY - JOUR A1 - Wilke, Manuel A1 - Batzdorf, Lisa A1 - Fischer, Franziska A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Cadmium phenylphosphonates: preparation, characterisation and in situ investigation N2 - The successful mechanochemical syntheses of three cadmium phenylphosphonates indicates that mechanochemistry is ideally suited for synthesizing metal phosphonates. With this powerful synthesis tool it is possible to synthesize rapidly and efficiently both known and novel phosphonates. The Crystal structures of the two new compounds, and, were solved from PXRD data. They contain monodeprotonated phenylphosphonate and neutral phenylphosphonic acid ligands. The synthesis pathways of all three compounds were investigated in situ. A diffusion mechanism is corroborated by our findings. Intermediates could be detected and identified. The kinetically favored product (3) could always be detected during the syntheses. The thermodynamic stability of the compounds and the stoichiometric ratio of the starting materials are the two directing factors for the synthesis of the final products. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - MOF KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363322 SN - 2046-2069 VL - 6 IS - 42 SP - 36011 EP - 36019 PB - Royal Soc Chemistry CY - Cambridge, UK AN - OPUS4-36332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses N2 - The synthesis of the polymorphic cocrystal caffeine:anthranilic acid was investigated to obtain a better understanding of the processes leading to the formation of different polymorphic forms. In the case of these cocrystal polymorphs synthesized by liquid-assisted grinding a distinct influence of the dipole moment of the solvent was found. A pre-coordination between the solvent molecules and the caffeine:anthranilic acid cocrystal could be identified in the formation of form II. In the case of form II the solvent can be regarded as a catalyst. The formation pathway of each polymorph was evaluated using synchrotron X-ray diffraction. KW - cocrystal KW - synchrotron X-ray diffraction KW - caffeine PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-313222 SN - 1466-8033 VL - 16 IS - 35 SP - 8272 EP - 8278 CY - London, UK AN - OPUS4-31322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Wenzel, Klaus-Jürgen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Quantitative determination of activation energies in mechanochemical reactions N2 - Mechanochemical reactions often result in 100% yields of single products, making purifying procedures obsolete. Mechanochemistry is also a sustainable and eco-friendly method. The ever increasing interest in this method is contrasted by a lack in mechanistic understanding of the mechanochemical reactivity and selectivity. Recent in situ investigations provided direct insight into formation pathways. However, the currently available theories do not predict temperature T as an influential factor. Here, we report the first determination of an apparent activation energy for a mechanochemical reaction. In a temperaturedependent in situ study the cocrystallisation of ibuprofen and nicotinamide was investigated as a model system. These experiments provide a pivotal step towards a comprehensive understanding of milling reaction mechanisms. KW - Mechanochemistry KW - Cocrystal KW - Activation energy KW - Milling PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-377444 SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 33 SP - 23320 EP - 23325 AN - OPUS4-37744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Lubjuhn, Dominik A1 - Greiser, Sebastian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Supply and demand in the ball mill: competitive cocrystal reactions N2 - The stability of different theophylline cocrystals under milling conditions was investigated by competitive cocrystal reactions. To determine the most stable cocrystal form under milling conditions, the active pharmaceutical ingredient theophylline was either ground with two similar coformers (benzoic acid, benzamide, or isonicotinamide), or the existing theophylline cocrystals were ground together with a competitive coformer. All competitive reactions were investigated by in situ powder X-ray diffraction disclosing the formation pathway of the milling processes. On the basis of these milling reactions, a stability order (least to most stable) was derived: tp/bs < tp/ba < tp/ina < bs/ina. KW - Mechanochemistry KW - Cocrystal KW - Milling PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.6b00928 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 10 SP - 5843 EP - 5851 AN - OPUS4-38097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Joester, Maike A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Survival of the fittest: competitive co-crystal reactions in the ball mill N2 - The driving forces triggering the formation of co-crystals under milling conditions were investigated by using a set of multicomponent competitive milling reactions. In these reactions, different active pharmaceutical ingredients were ground together with a further compound acting as coformer. The study was based on new co-crystals including the coformer anthranilic acid. The results of the competitive milling reactions indicate that the formation of co-crystals driven by intermolecular recognition are influenced and inhibited by kinetic aspects including the formation of intermediates and the stability of the reactants. PY - 2015 U6 - https://doi.org/10.1002/chem.201500925 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 42 SP - 14969 EP - 14974 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-34861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Fischer, Franziska A1 - Wilke, Manuel A1 - Wenzel, Klaus-Jürgen A1 - Emmerling, Franziska T1 - Direct in situ investigation of milling reactions using combined x-ray diffraction and raman spectroscopy N2 - The combination of two analytical methods including time-resolved in situ X-ray diffraction (XRD) and Raman spectroscopy provides a new opportunity for a detailed analysis of the key mechanisms of milling reactions. To prove the general applicability of our setup, we investigated the mechanochemical synthesis of four archetypical model compounds, ranging from 3D frameworks through layered structures to organic molecular compounds. The reaction mechanism for each model compound could be elucidated. The results clearly show the unique advantage of the combination of XRD and Raman spectroscopy because of the different information content and dynamic range of both individual methods. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structures and thus obtaining reliable data for mechanistic studies. PY - 2015 U6 - https://doi.org/10.1002/anie.201409834 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 54 IS - 6 SP - 1799 EP - 1802 PB - Wiley-VCH CY - Weinheim AN - OPUS4-34630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Emmerling, Franziska T1 - Synthesis, structure determination, and formation of a theobromine: oxalic acid 2:1 cocrystal N2 - The structure and the formation pathway of a new theobromine : oxalic acid (2 : 1) cocrystal are presented. The cocrystal was synthesised mechanochemically and its structure was solved based on the powder X-ray data. The mechanochemical synthesis of this model compound was studied in situ using synchrotron XRD. Based on the XRD data details of the formation mechanism were obtained. The formation can be described as a self-accelerated ('liquid like') process from a highly activated species. KW - ssNMR spectroscopy KW - Synchrotron measurements KW - API molecule PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-331567 SN - 1466-8033 VL - 17 IS - 4 SP - 824 EP - 829 CY - London, UK AN - OPUS4-33156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Greiser, Sebastian A1 - Peifer, Dietmar A1 - Jäger, Christian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemically Induced Conversion of Crystalline Benzamide Polymorphs by Seeding N2 - Benzamide has been known for its polymorphism for almost 200 years.Three polymorphic forms are described. To date,itwas only possible to crystallizeametastable form in amixture together with the thermodynamically most stable form I. Acomplete transformation of form Iinto the metastable form III by mechanochemical treatment has been achieved. Catalytic amounts of nicotinamide seeds were used to activate the conversion by mechanochemical seeding. NMR experiments indicated that the nicotinamide molecules were incorporated statistically in the crystal lattice of benzamide form III during the conversion. The transformation pathway was evaluated using in situ powder X-ray diffraction. KW - Nicotinamide KW - Benzamide KW - In situ reactions KW - Mechanochemistry KW - Polymorphs PY - 2016 U6 - https://doi.org/10.1002/anie.201607358 VL - 128 IS - 46 SP - 14493 EP - 14497 PB - WILEY-VCH CY - Weinheim AN - OPUS4-38472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanova, N. A1 - Tumanov, N. A1 - Robeyns, K. A1 - Fischer, Franziska A1 - Fusaro, L. A1 - Morelle, F. A1 - Ban, V. A1 - Hautier, G. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. A1 - Emmerling, Franziska T1 - Opening Pandora’s Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals N2 - Proline has been widely used for various cocrystallization applications, including pharmaceutical cocrystals. Combining enantiopure and racemic flurbiprofen and proline, we discovered 18 new crystal structures. Liquid-assisted grinding proved highly efficient to explore all the variety of crystal forms. A unique combination of stateof-the-art characterization techniques, comprising variable temperature in situ X-ray diffraction and in situ ball-milling, along with other physicochemical methods and density functional theory calculations, was indispensable for identifying all the phases. Analyzing the results of in situ ball-milling, we established a stepwise mechanism for the formation of several 1:1 cocrystals via an intermediate 2:1 phase. The nature of the solvent in liquidassisted grinding was found to significantly affect the reaction rate and, in some cases, the reaction pathway. KW - Mechanochemistry KW - Polymorphs KW - In situ PY - 2018 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b01436 U6 - https://doi.org/10.1021/acs.cgd.7b01436 VL - 18 IS - 2 SP - 954 EP - 961 PB - American Chemical Society AN - OPUS4-44365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Heidrich, Adrian A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Polymorphism of mechanochemically synthesized cocrystals: a case study N2 - The liquid-assisted grinding cocrystallisation of theophylline with benzamide leading to polymorphic compounds was investigated. A solvent screening with seventeen different solvents was performed. The dipole moment of the solvent used in the synthesis determines the structure of the polymorphic product. A detailed investigation leads to the determination of the kinetically and thermodynamically favored product. In situ observations of the formation pathway during the grinding process of both polymorphs show that the thermodynamically favored cocrystal is formed in a two-step mechanism with the kinetic cocrystal as intermediate. KW - cocrystal KW - mechanochemistry KW - theophylline KW - benzamide KW - milling KW - polymorphism PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.5b01776 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 3 SP - 1701 EP - 1707 AN - OPUS4-35618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Schmidt, M. U. A1 - Greiser, Sebastian A1 - Emmerling, Franziska T1 - The challenging case of the theophylline–benzamide cocrystal N2 - Theophylline has been used as an active pharmaceutical ingredient (API) in the treatment of pulmonary diseases, but due to its low water solubility reveals very poor bioavailability. Based on its different hydrogen-bond donor and acceptor groups, theophylline is an ideal candidate for the formation of cocrystals. The crystal structure of the 1:1 benzamide cocrystal of theophylline, C7H8N4O2·-C7H7NO, was determined from synchrotron X-ray powder diffraction data. The compound crystallizes in the tetragonal space group P41 with four Independent molecules in the asymmetric unit. The molecules form a hunter’s fence packing. The crystal structure was confirmed by dispersion-corrected DFT calculations. The possibility of salt formation was excluded by the results of Raman and 1H solid-state NMR spectroscopic analyses. KW - powder diffraction KW - theophylline KW - benzamide KW - cocrystal KW - crystal structure KW - active pharmaceutical ingredient KW - dispersion-corrected density-functional theory PY - 2016 U6 - https://doi.org/10.1107/S2053229616002643 SN - 2053-2296 VL - 72 IS - 3 SP - 217 EP - 224 AN - OPUS4-35621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Fendel, Nicole A1 - Greiser, Sebastian A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Impact is important - Systematic investigation of the influence of milling balls in mechanochemical reactions N2 - A newly established in situ technique using Raman spectroscopy was employed for the detailed kinetic investigation of mechanochemical reaction pathways. This approach was applied for the systematic investigation of the direct influence of colliding balls on the reaction rate constants of a mechanochemical cocrystallization reaction. As a model reaction, the mechanochemical cocrystallization of felodipine and the coformer imidazole was investigated. Keeping the total ball mass constant by varying the number of milling balls, our study reveals that the impact of each single collision has a more significant influence on the reaction kinetics than expected. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.oprd.6b00435 U6 - https://doi.org/10.1021/acs.oprd.6b00435 SN - 1083-6160 SN - 1520-586X VL - 21 IS - 4 SP - 655 EP - 659 AN - OPUS4-40355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Wilke, Manuel A1 - Fischer, Franziska A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Warming up for mechanosynthesis – temperature development in ball mills during synthesis N2 - We present a first direct measurement of the temperature during milling combined with in situ Raman spectroscopy monitoring. The data reveal a low temperature increase due to the mechanical impact and clear temperature increases as a consequence of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. KW - Thermography KW - Milling KW - Mechanochemistry KW - Soft matter PY - 2017 U6 - https://doi.org/10.1039/c6cc08950j SN - 1364-548X SN - 1359-7345 SN - 0009-241X VL - 53 IS - 10 SP - 1664 EP - 1667 AN - OPUS4-39251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Emmerling, Franziska T1 - Synthesen in der Kugelmühle N2 - Wärme, Licht und Elektrizität sind die typischen Energiequellen chemischer Synthesen. In den letzten Jahren haben sich aber auch mechanische Kräfte etabliert: Mechanochemie braucht kein Lösungsmittel und funktioniert bei Raumtemperatur. Über die zugrundeliegenden Prozesse ist bislang wenig bekannt. KW - Mechanochemie PY - 2016 U6 - https://doi.org/10.1002/nadc.20164046717 SN - 1439-9598 SN - 1868-0054 VL - 64 IS - 5 SP - 509 EP - 513 AN - OPUS4-39282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensation investigated in situ N2 - The mechanochemical Knoevenagel condensation of malononitrile with p-nitrobenzaldehyde was studied in situ using a tandem approach. X-ray diffraction and Raman spectroscopy were combined to yield time-resolved information on the milling process. Under solvent-free conditions, the reaction leads to a quantitative conversion to p-nitrobenzylidenemalononitrile within 50 minutes. The in situ data indicate that the process is fast and proceeds under a direct conversion. After stopping the milling process, the reaction continues until complete conversion. The continuous and the stopped milling process both result in crystalline products suitable for single crystal X-ray diffraction. KW - Mechanochemistry KW - Ball milling KW - C–C coupling KW - In situ KW - Knoevenagel condensation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-425388 VL - 13 SP - 2010 EP - 2014 PB - Beilstein-Institut AN - OPUS4-42538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Tumanov, N. A1 - Tumanova, N. A1 - Fischer, Franziska A1 - Morelle, F. A1 - Ban, V. A1 - Robeyns, K. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. T1 - Exploring polymorphism and stoichiometric diversity in naproxen/proline cocrystals N2 - We present naproxen/proline cocrystals discovered when combining enantiopure and racemic naproxen and proline. Using liquid-assisted grinding as the main method to explore the variety of crystal forms in this system, we found 17 cocrystals, of which the structures of only four of them were previously known. The naproxen/proline system exhibited multiple polymorphs of 1 : 1 stoichiometry as well as more rare cocrystals with 1 : 2 and 2 : 3 stoichiometries, two cocrystal hydrates and one cocrystal solvate. In situ ballmilling, used to monitor liquid-assisted grinding reactions, revealed that the solvent dictates the reaction intermediates even if the final reaction product stays the same. Synchrotron X-ray diffraction data collected in situ upon heating allowed us to monitor directly the phase changes upon heating and gave access to pure diffraction patterns of several cocrystals, thus enabling their structure determination from powder X-ray diffraction data; this method also confirmed the formation of a conglomerate in the RS-naproxen/DL-proline system. Proline in cocrystals kept its ability to form charge-assisted head-to-tail N-H⋯O hydrogen bonds, typical of pure crystalline amino acids, thus increasing the percentage of strong chargeassisted interactions in the structure and consequently providing some of the cocrystals with higher melting points as compared to pure naproxen. The majority of drugs are chiral, and hence, these data are of importance to the pharmaceutical industry as they provide insight into the challenges of chiral cocrystallization. KW - In situ KW - Mechanochemistry KW - XRD PY - 2018 UR - https://pubs.rsc.org/en/Content/ArticleLanding/CE/2018/C8CE01338A#!divAbstract U6 - https://doi.org/10.1039/c8ce01338a SN - 1466-8033 VL - 20 IS - 45 SP - 7308 EP - 7321 PB - Royal Society of Chemistry CY - London AN - OPUS4-46913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Fischer, Franziska A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD N2 - The effect of the reactant powder mass on reaction times for the mechanochemical formation of a soft matter model system was studied by in situ PXRD. The syntheses were performed at a constant ball mass in a shaker mill with and without glassy SiO2 as an inert additive. Reaction times decreased with the increase of the ball to reactant ratio (BRR). The kinetic influence of the SiO2 powder was excluded. The decrease in the reaction time with decreasing mass of reactants was related to the rise in the stress energy transferred to the powder by a higher ball impact. The BRR had no effect on the induction time. But the product conversion was accelerated by raising the BRR. While a certain temperature is needed for the activation of reactants in the induction phase, the conversion of soft matter reactants is rather controlled by impact than temperature. KW - XRD KW - Mechanochemistry PY - 2017 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce00502d U6 - https://doi.org/10.1039/c7ce00502d VL - 19 IS - 28 SP - 3902 EP - 3907 AN - OPUS4-41197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Zientek, Nicolai A1 - Rump, Doreen A1 - Fischer, Franziska A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Make and break - Facile synthesis of cocrystals and comprehensive dissolution studies N2 - Mechanochemistry is increasingly used as a ‘green alternative’ for synthesizing various materials including pharmaceutical cocrystals. Herein, we present the mechanochemical synthesis of three new cocrystals containing the API carbamazepine (cocrystals CBZ:Indometacin 1:1, CBZ:Benzamide 1:1, and CBZ:Nifedipine 1:1). The mechanochemical reaction was investigated in situ documenting a fast and complete reaction within one minute. Online NMR spectroscopy proved the direct influence of the dissolution behaviour of the coformers to the dissolution behaviour of the API carbamazepine. The dissolution behaviour of the organic cocrystals is compared to the behaviour of the pure drug indicating a general applicability of this approach for detailed cocrystal dissolution studies. KW - Cocrystals KW - Carbamazepine KW - Mechanochemistry KW - Powder diffraction KW - Online NMR spectroscopy PY - 2017 U6 - https://doi.org/10.1016/j.molstruc.2016.11.063 SN - 0022-2860 SN - 1872-8014 VL - 1133 SP - 18 EP - 23 AN - OPUS4-38664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -