TY - JOUR A1 - Leiterer, Jork A1 - Leitenberger, W. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Panne, Ulrich T1 - The use of an acoustic levitator to follow crystallization in small droplets by energy-dispersive X-ray diffraction N2 - For the investigation of small sample volumes, the use of an acoustic levitator was tested as a `sample holder' for hovering droplets in a synchrotron beam. It might be advantageous to use levitated droplets instead of samples confined in solid holders, especially for the study of crystallization processes where the influence of containing walls has to be minimized. In a first experiment, the crystallization of sodium chloride in a small droplet of aqueous solution has been followed with a time resolution of 30 s. The collected diffraction peaks are compared with data in the ICSD database. KW - EDXD KW - Noncontact measurement technique KW - X-ray-scattering KW - Synchrotron-radiation KW - Acoustic levitation PY - 2006 U6 - https://doi.org/10.1107/S0021889806024915 SN - 0021-8898 SN - 1600-5767 VL - 39 IS - 5 SP - 771 EP - 773 PB - Blackwell CY - Oxford AN - OPUS4-13516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Orgzall, I. A1 - Reck, Günter A1 - Schulz, Burkhard A1 - Stockhause, S. A1 - Schulz, B. T1 - Structures of substituted di-aryl-1,3,4-oxadiazole derivatives: 2,5-bis(pyridyl)- and 2,5-bis(aminophenyl)-substitution N2 - Crystal structures of four different di-aryl-1,3,4-oxadiazole compounds (aryl = 2-pyridyl-, 3-pyridyl-, 2-aminophenyl-, 3-aminophenyl-) are determined. Crystallization of di(2-pyridyl)-1,3,4-oxadiazole yielded monoclinic and triclinic polymorphs. The structures are characterized by the occurrence of π–π interactions. Additionally, in case of the aminophenyl compounds intra- as well as intermolecular hydrogen bonds are found that influence the packing motif as well. Since these molecules are often used as ligands in metal–organic complexes similarities and differences of the molecular conformation between the molecules in the pure crystals and that of the ligands in the complexes are discussed. KW - Crystal structure KW - 1,3,4-Oxadiazole KW - Molecular conformation KW - Hydrogen bonds PY - 2006 U6 - https://doi.org/10.1016/j.molstruc.2006.03.076 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 800 IS - 1-3 SP - 74 EP - 84 PB - Elsevier CY - Amsterdam AN - OPUS4-13799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuchalski, G. A1 - Emmerling, Franziska A1 - Gröger, K. A1 - Hänsicke, A. A1 - Nagel, T. A1 - Reck, Günter T1 - X-ray investigations of nebivolol and its isomers N2 - The molecular and crystal structures of the hydrochlorides of d-nebivolol, dl-nebivolol, and seven nebivolol isomers have been determined by X-ray structure analysis. The absolute configuration of all the compounds could be determined unambiguously using anomal dispersion effects. Two compounds, dl-nebivolol (NEB-1d,l) and the (S,R,S,R) nebivolol isomer (NEB-6), crystallize as racemic mixtures in the centrosymmetric space group P-1. d-Nebivolol and six nebivolol isomers crystallize in space group P212121. The d- and l-nebivolol molecules in NEB-1d and NEB-1d,l adopt a conformation which is significantly different compared with that of all nebivolol isomers. With the exception of dl-nebivolol (NEB-1d,l) numerous intermolecular hydrogen bonds connect the molecules forming molecular layers. KW - X-ray crystal structure KW - Nebivolol PY - 2006 U6 - https://doi.org/10.1016/j.molstruc.2006.03.086 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 800 IS - 1-3 SP - 28 EP - 44 PB - Elsevier CY - Amsterdam AN - OPUS4-13800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, Werner A1 - Walther, M. A1 - Jung, C. M. A1 - Emmerling, Franziska A1 - Pietzsch, H.-J. T1 - Bromotricarbonyl{15-[2-(methylsulfanyl)ethylsulfanyl]pentadecanoic acid-kappa2S,S'}rhenium(I) N2 - The title compound, [ReBr(C18H36O2S2)(CO)3], was synthesized and characterized as a non-radioactive surrogate of a novel Tc-containing fatty acid derivative prepared according to the tricarbonyl/dithioether design with the objective of developing new Tc-based radiopharmaceuticals for the non-invasive diagnosis of myocardial metabolism. The Re chelate contains the metal in the oxidation state +1 and is attached to the terminal position of a fatty acid. The complex formation was accomplished by a ligand exchange reaction using [NBu4]2[Re(CO)3Br3] as starting material. KW - Fatty acid KW - Tc-compound KW - Radio-pharmaceutical PY - 2006 U6 - https://doi.org/10.1107/S1600536806024081 SN - 1600-5368 VL - 62 IS - 7 SP - m1660 EP - m1662 PB - Munksgaard CY - Copenhagen AN - OPUS4-12529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meißner, T. A1 - Bergmann, R. A1 - Oswald, J. A1 - Rode, K. A1 - Stephan, H. A1 - Richter, W. A1 - Zänker, H. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Reck, Günter T1 - Chitosan-encapsulated Keggin anion [Ti2W10PO40]7-.Synthesis, characterization and cellular uptake studies N2 - The Keggin type polyoxotungstate [Ti2W10PO40]7- forms stable associates with the biopolymer chitosan in the nanometer size range. The cluster compound crystallizes from aqueous solution as K4H3[Ti2W10PO40] · 15H2O having a tetragonal structure. Both, the cluster compound and the chitosan/[Ti2W10PO40] associates show a high hydrolytic stability at pH 7.4. The associates formed between the cluster anion [Ti2W10PO40]7- with the polyaminosaccharide chitosan have been characterized by photon correlation spectroscopy, scanning electron microscopy, filtration, centrifugation and zeta potential measurements. The size of the associates formed is in the range of ca. 5×101 to 5×102 nm. These particles have a defined stoichiometry with 5–6 cluster anions bound per molecule chitosan. The isoelectric point determined by zeta potential measurements was found for a cluster anion to chitosan molar ratio of 5.5, indicating the charge neutralization between protonated chitosan and [Ti2W10PO40]7- anions. Cellular uptake studies with [Ti2W10PO40]7- using tumor cell lines FaDu (human squamous carcinoma) and HT-29 (human adenocarcinoma) showed that the tungsten amount inside the cells is remarkably enhanced in the presence of chitosan. KW - Cluster compound KW - Keggin structure KW - Bipolymer KW - Chitosan PY - 2006 U6 - https://doi.org/10.1007/s11243-006-0035-z SN - 0340-4285 SN - 1572-901X VL - 31 IS - 5 SP - 603 EP - 610 PB - Springer CY - Dordrecht AN - OPUS4-12568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhlich, Paul A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Nehls, Irene A1 - Piechotta, Christian T1 - 1-(4-bromo-3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)ethan-1-one: a precursor for phase-I metabolite of AHTN N2 - The title compound, C18H25BrO, crystallized as a racemate with four independent molecules in the asymmetric unit. In the crystal, three of these four molecules are linked via C-Br...Br-C halogen bonds [Br...Br = 3.662 (2) and 3.652 (2) Å], forming dimers. PY - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-279935 SN - 1600-5368 VL - 69 IS - 4 SP - o545, sup-1 EP - sup-17 PB - Munksgaard CY - Copenhagen AN - OPUS4-27993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Comba, P. A1 - Emmerling, Franziska A1 - Jakob, M. A1 - Kraus, Werner A1 - Kubeil, M. A1 - Morgen, M. A1 - Pietzsch, J. A1 - Stephan, H. T1 - Copper(II) chemistry of the functionalized macrocycle cyclam tetrapropionic acid N2 - The CuII complex of H4TETP (H4TETP = 1,4,8,11-tetraazatetradecane-1,4,8,11-tetrapropionic acid) is five-coordinate with a distorted square-pyramidal structure (τ = 0.45; i.e. the geometry is nearly half-way between square-pyramidal and trigonal-bipyramidal) and a relatively long Cu–N and a short Cu–O bond; the comparison between powder and solution electronic spectroscopy, the frozen solution EPR spectrum and ligand-field-based calculations (angular overlap model, AOM) indicate that the solution and solid state structures are very similar, i.e. the complex has a relatively low 'in-plane' and a significant axial ligand field with a dx²-y² ground state. The ligand-enforced structure is therefore shown to lead to a partially quenched Jahn–Teller distortion and to a relatively low complex stability, lower than with the corresponding acetate-derived ligand H4TETA. This is confirmed by potentiometric titration and by the biodistribution with 64Cu-labeled ligands which show that the uptake in the liver is significantly increased with the H4TETP-based system. KW - Copper(II) KW - Chemistry PY - 2013 U6 - https://doi.org/10.1039/c2dt32356g SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 42 IS - 17 SP - 6142 EP - 6148 PB - RSC CY - Cambridge AN - OPUS4-28075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan, H. A1 - Kubeil, M. A1 - Emmerling, Franziska A1 - Müller, C.E. T1 - Polyoxometalates as versatile enzyme inhibitors N2 - Polyoxometalates (POMs) are inorganic cluster compounds that have been shown to possess a number of pharmacological properties, including antidiabetic, antibacterial, antiprotozoal, antiviral and anticancer activities. Their molecular mechanism of action is largely unknown. However, several studies indicate that many of their activities may be due to the inhibition of enzymes, in particular, of those enzymes that are accessible from the extracellular space and do not require the penetration of cell membranes. In this review, we describe the recent progress in the preparation and optimization of POMs, and an evaluation of their use as inhibitors of different families of enzymes. The next important steps in this area of research will be to gain a better understanding of the interactions of POMs with enzymes on a structural level through an X-ray crystallographic study of enzyme–POM complexes and the analysis of structure–activity relationships. Furthermore, POMs with increased stability and in vivo half-lives have to be prepared. Surface modification may allow the targeting of POM drugs at their sites of action. KW - Cluster compounds KW - Poly­oxometalates KW - Metalloprotein mimics KW - Enzymes KW - Inhibitors KW - Bioinorganic chemistry PY - 2013 U6 - https://doi.org/10.1002/ejic.201201224 SN - 1434-1948 SN - 1099-0682 VL - 2013 IS - 10-11 SP - 1585 EP - 1594 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gnutzmann, Tanja A1 - Kahlau, R. A1 - Scheifler, S. A1 - Friedrichs, Ferdinand A1 - Rössler, A. A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Crystal growth rates and molecular dynamics of nifedipine N2 - The unusually fast crystallization of the organic compound nifedipine has been investigated in detail using different solutions as precursors for the formation of the initial glassy nifedipine films. Starting from these amorphous films the crystallization process was investigated by time-resolved light microscopy at different temperatures around Tg of nifedipine. In all studied cases (acetone, acetonitrile, ethyl acetate, dichloromethane, tetrahydrofuran) the measured mean crystallization rates are, on average, 10000 times higher than rates reported in previous studies. Such high rates cannot be explained by a classical diffusional crystal growth mechanism of nifedipine. Instead, nifedipine shows a strong propensity for diffusionless growth. Solvent assisted or solvent induced preordering of the glassy modification is suggested to be the most probable driving force behind these fast crystallization processes. The nifedipine crystallization rates can be controlled not only by specific solvent–molecule interactions but also by temperature. Below 40 °C, the temperature dependence of the rates is generally small. Above 40 °C, a slowing down of the crystallization rates with increasing temperatures indicates a kinetic competition between different polymorphs. The molecular dynamics of nifedipine molecules in the amorphous phase as well as the relaxation times are studied by dielectric measurements. The dielectric data corroborate the inherently strong propensity of nifedipine to crystallize diffusionlessly under all conditions. KW - Fast crystallization KW - Diffusionless growth KW - Polymorphism KW - Nifedipine KW - Preordering KW - Raman spectroscopy KW - Dielectric spectroscopy PY - 2013 U6 - https://doi.org/10.1039/c2ce26911b SN - 1466-8033 VL - 15 IS - 20 SP - 4017 EP - 4202 CY - London, UK AN - OPUS4-28307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, C. A1 - Takao, S. A1 - Takao, K. A1 - Weiss, s. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Meyer, M. A1 - Scheinost, A.C. T1 - Identification of hexanuclear actinide(IV) carboxylates with thorium, uranium and neptunium by EXAFS spectroscopy N2 - Hydrated actinide(IV) ions undergo hydrolysis and further polymerization and precipitation with increasing pH. The resulting amorphous and partly crystalline oxydydroxides AnOn(OH)4-2n·xH2O can usually be observed as colloids above the An(IV) solubility limit. The aging process of such colloids results in crystalline AnO2. The presence of carboxylates in the solution prevents the occurrence of such colloids by formation of polynuclear complexes through a competing reaction between hydrolysis and ligation. The majority of recently described carboxylates reveals a hexanuclear core of [An6(µ3-O)4(µ3-OH)4]12+ terminated by 12 carboxylate ligands. We found that the An(IV) carboxylate solution species remain often preserved in crystalline state. The An(IV) carboxylates show An–An distances which are ~ 0.03 Å shorter than the An–An distances in AnO2 like colloids. The difference in the distances could be used to identify such species in solution. T2 - XAFS15 - 15th International conference on X-ray absorption fine structure CY - Beijing, China DA - 22.07.2012 KW - Carboxylates KW - EXAFS KW - Actinide PY - 2013 U6 - https://doi.org/10.1088/1742-6596/430/1/012116 SN - 1742-6588 SN - 1742-6596 VL - 430 SP - 012116-1 EP - 012116-5 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-28525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Characterization of mechanochemically synthesized MOFs N2 - The compound MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) was synthesized by ball milling and characterized by powder X-ray diffraction (XRD). The raw material was activated using an efficient single washing step to ensure a free pore access. Nitrogen adsorption measurements were carried out to determine the specific areas of the samples before and after activation. To interpret the activation process in terms of blocking effects in the micropore channels, NLDFT evaluations (Nonlocal Density Functional Theory) of the MOF-14 nitrogen isotherms were carried out. In connection with the appearance of additional hysteresis loops in the nitrogen isotherms, calculations of the mesopore size distribution were performed using the method of Barret, Joyner, and Halenda (BJH). The results are compared to those of a structurally analogue MOF, namely HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate). This comparison showed notable differences regarding the impact of the activation step on the formation of mesopores and their size distribution. KW - Metal-organic frameworks KW - Mechanochemistry KW - Gas adsorption KW - Specific surface area KW - MOF-14 PY - 2012 U6 - https://doi.org/10.1016/j.micromeso.2011.11.039 SN - 1387-1811 SN - 1873-3093 VL - 154 SP - 113 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-25597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schenk, Jonas A1 - Batzdorf, Lisa A1 - Emmerling, Franziska A1 - Kneipp, Janina A1 - Panne, Ulrich A1 - Buurman, Merwe T1 - Simultaneous UV/Vis spectroscopy and surface enhanced raman scattering of nanoparticle formation and aggregation in levitated droplets N2 - The formation and growth of hydroxylamine reduced silver nanoparticles were investigated by simultaneous Raman and UV/Vis spectroscopy coupled to an acoustic levitator as a sample holder. Based on the UV/Vis spectra, a two step particle formation mechanism with fast initial formation and adjacent coalescence can be proposed for the reduction of silver nitrate with hydroxylamine. The presence of the analyte adenine during particle formation resulted in differences in the adenine SERS signature compared to experiments, where adenine was added after particle synthesis. It was possible to monitor the adenine and sodium chloride induced aggregation of the nanoparticles and its dynamics based on both the extinction spectra and the SERS data. Correlating the information from the extinction spectra with the SERS intensity, the maximum SERS signals were observed at maximum extinction of the aggregated nanoparticle solution at the Raman excitation wavelength. PY - 2012 U6 - https://doi.org/10.1039/c2ay05744a SN - 1759-9660 SN - 1759-9679 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. N1 - Geburtsname von Buurman, Merwe: Albrecht, M. - Birth name of Buurman, Merwe: Albrecht, M. VL - 4 IS - 5 SP - 1252 EP - 1258 PB - RSC Publ. CY - Cambridge AN - OPUS4-25742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Gebert, Antje A1 - Emmerling, Franziska A1 - Becker, Roland A1 - Nehls, Irene T1 - Koenigs-Knorr reaction of fusel alcohols with methyl (1-bromo-2,3,4-tri-O-acetyl-alpha-D-glucopyranosid)uronate leading to the protected alkyl glucuronides-crystal structures and high resolution 1H and 13C NMR data N2 - Crystal structures and high resolution 1H and 13C NMR spectral data for methyl (alkyl 2,3,4-tri-O-acetyl-β-D-glucopyranosid)uronates (alkyl = methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl, n-pentyl, 2-methyl-1-butyl and 3-methyl-1-butyl) are presented. KW - D-Glucuronic acid derivates KW - X-ray analysis KW - High resolution NMR KW - Anomeric configuration KW - Synthesis PY - 2012 U6 - https://doi.org/10.1016/j.carres.2012.01.002 SN - 0008-6215 SN - 1873-426X VL - 352 SP - 186 EP - 190 PB - Elsevier CY - Amsterdam AN - OPUS4-25759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noack, J. A1 - Emmerling, Franziska A1 - Kirmse, H. A1 - Kemnitz, E. T1 - Sols of nanosized magnesium fluoride: formation and stabilisation of nanoparticles N2 - The formation of magnesium fluoride sols and xerogels according to the fluorolytic sol–gel synthesis based on the reaction of Mg(OMe)2 with non-aqueous HF has been thoroughly investigated by X-ray scattering (WAXS/XRD), TEM, SAXS, DLS and 19F MAS NMR spectroscopy. Mechanistic insights were gained by following the reaction progress and formation of intermediate phases of the fluorination of magnesium alkoxides. For F:Mg ratios of 0.3 and 0.4 the formation of two crystalline phases was observed containing the recently obtained compound [Mg6F2(OCH3)10(CH3OH)14] hexanuclear dicubane units. The stoichiometric reaction yields magnesium fluoride nanoparticles with crystallite sizes below 5 nm, which show broad reflections in the X-ray diffraction pattern. Metal fluoride sols prepared by this way undergo tremendous changes over the first several weeks after synthesis. Immediately after the fluorination, particles of about 120 nm—probably agglomerates—are formed, which break apart in the course of about one month of ageing and low-viscous, transparent sols with particles of about 12 nm are obtained. At the same time structural re-organisation processes within the magnesium fluoride particles are observed by an increase of the (110) reflection in WAXS. KW - Surface modification KW - Colloidal particles KW - Gold nanoparticles KW - Gel synthesis KW - Small-angle scattering KW - Oxide KW - Polyelectrolytes KW - Aggregation KW - Dispersion PY - 2011 U6 - https://doi.org/10.1039/c1jm11943e SN - 0959-9428 SN - 1364-5501 VL - 21 IS - 38 SP - 15015 EP - 15021 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-26183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kahlau, R. A1 - Gnutzmann, Tanja A1 - Emmerling, Franziska A1 - Rademann, K. A1 - Rössler, E.A. T1 - Quinaldine: Accessing two crystalline polymorphs via the supercooled liquid N2 - Quinaldine (2-methyl quinoline) is a liquid at room temperature, which can be supercooled to reach finally the glassy state. By heating the glass above the glass transition temperature Tg = 180 K the sample performs two subsequent transitions into, likewise, dielectrically active phases. Thus, the reorientational relaxations of these phases as well as the kinetics of the phase transitions can be tracked in a highly resolved way by dielectric spectroscopy. X-ray diffraction analysis clearly shows two structurally different crystalline phases in addition to the supercooled liquid. Calorimetric measurements support the notion of first order phase transitions, occurring irreversibly in the supercooled regime, and suggest that the intermediate crystalline phase is metastable, too. Analyzing the quite distinct dielectric relaxation strengths, we discuss the possible nature of the two crystalline phases. Additionally, a very similar behavior to quinaldine is observed for 3-methyl quinoline, indicating a broad field of polymorphism among the quinoline derivatives. KW - Calorimetry KW - Dielectric liquids KW - Dielectric relaxation KW - Glass transition KW - Liquid structure KW - Organic compounds KW - Polymorphism KW - Supercooling KW - X-ray diffraction PY - 2012 U6 - https://doi.org/10.1063/1.4738583 SN - 0021-9606 SN - 1089-7690 VL - 137 IS - 5 SP - 054505-1 - 054505-10 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Rademann, K. A1 - Gericke, E. A1 - Weidemann, S. A1 - Bansen, R. A1 - Boeck, T. T1 - Selective Growth of Trigonal and Hexagonal Shaped Silver Micro-Nano-Platelets at the Water/Oil Interface T2 - JungChemikerForum CY - Berlin, Germany DA - 2013-03-06 PY - 2013 AN - OPUS4-28285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - Müller, Urs A1 - Panne, Ulrich A1 - Emmerling, Franziska A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Neue Wege in der Zementanalytik - Hochaufgelöste in-situ Sy-XRD T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 PY - 2011 SN - 978-3-9814281-0-0 SP - 18 EP - 24 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25197 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarfraz, Adnan A1 - Schlegel, Moritz-Caspar A1 - Wright, J. A1 - Emmerling, Franziska T1 - Advanced gas hydrate studies at ambient conditions using suspended droplets N2 - We report the spontaneous formation of a clathrate hydrate in a suspended droplet at ambient conditions. A novel method for producing and stabilizing clathrates for analytical studies is described. KW - Clathrates KW - Thermography KW - Acoustic levitator KW - Dichloromethane PY - 2011 U6 - https://doi.org/10.1039/c1cc13049h SN - 0022-4936 SN - 1359-7345 VL - 47 IS - 33 SP - 9369 EP - 9371 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-24480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseph, Viginia A1 - Matschulat, Andrea A1 - Polte, Jörg A1 - Rolf, Simone A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - SERS enhancement of gold nanospheres of defined size N2 - Monodisperse, citrate-stabilized gold nanoparticles of sizes ranging from 15 to 40 nm were synthesized and characterized by small angle X-ray scattering and UV-vis experiments. Identical surface properties of nanoparticles of different sizes to avoid variation in the chemical surface-enhanced Raman scattering (SERS) enhancement, as well as selection of experimental conditions so that no aggregation took place, enabled the investigation of enhancement of individual nanospheres. Enhancement factors (EFs) for SERS were determined using the dye crystal violet (CV). EFs for individual gold nanospheres ranged from 102 to 103, in agreement with theoretical predictions. An increase of the EFs of individual spheres with size can be correlated to changes in the extinction spectra of nanoparticle solutions. This confirms that the increase in enhancement with increasing size results from an increase in electromagnetic enhancement. Beyond this dependence of EFs of isolated gold spheres on their size, EFs were shown to vary with analyte concentration as a result of analyte-induced aggregation. This has implications for the application of nanoparticle solutions as SERS substrates in quantitative analytical tasks. KW - Surface-enhanced Raman scattering KW - Electromagnetic enhancement factor KW - Crystal violet KW - Citrate reduction KW - Gold nanoparticles PY - 2011 U6 - https://doi.org/10.1002/jrs.2939 SN - 0377-0486 SN - 1097-4555 VL - 42 IS - 9 SP - 1736 EP - 1742 PB - Wiley CY - Chichester AN - OPUS4-24483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trowitzsch-Kienast, W. A1 - Rühl, M. A1 - Kim, K.Y. A1 - Emmerling, Franziska A1 - Erben, U. A1 - Somasundaram, R. A1 - Freise, C. T1 - Absolute configuration of antifibrotic (+)-episesamin isolated from Lindera obtusiloba BLUME N2 - Fractionation of a 70% ethanolic extract from twigs of Lindera obtusiloba BLUME (Japanese spicebush, Tohaku) yielded fi ve fractions of different polarity. The antifi brotic activity within the chloroform phase was best assessed by an in vitro bioassay using rat hepatic stellate cell (HSC) proliferation and their autocrine transforming growth factor beta (TGF-β) expression as sensitive fibrosis-associated read out. Chromatography of the chloroform extract on Sephadex LH-20 or liquid-liquid extractions yielded a crystalline compound as an active principle, which was identifi ed from NMR and ESI-MS analyses, its melting point, and its optical rotation as (7S,7'S,8S,8'S)-3,4:3',4'-bis(methylenedioxy) -7,9':7',9-diepoxy-lignane [(+)-episesamin]. X-Ray diffraction confirmed the structure and provided, for the fi rst time, directly its absolute confi guration. (+)-Episesamin blocked proliferation and the profi brotic autocrine TGF-β expression HSC without signifi cant cytotoxicity. KW - TGF-beta KW - Liver Fibrosis KW - X-Ray Structure PY - 2011 SN - 0939-5075 SN - 0341-0382 SN - 0341-0471 VL - 66c IS - 9/10 SP - 460 EP - 464 PB - Verl. d. Zeitschrift für Naturforschung CY - Tübingen AN - OPUS4-24716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, S. E. A1 - Leiterer, Jork A1 - Pipich, V. A1 - Barrea, R. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of "polymer-induced liquid precursor" processes N2 - The impact of the ovo proteins ovalbumin and lysozyme—present in the first stage of egg shell formation—on the homogeneous formation of the liquid amorphous calcium carbonate (LACC) precursor, was studied by a combination of complementing methods: in situ WAXS, SANS, XANES, TEM, and immunogold labeling. Lysozyme (pI = 9.3) destabilizes the LACC emulsion whereas the glycoprotein ovalbumin (pI = 4.7) extends the lifespan of the emulsified state remarkably. In the light of the presented data: (a) Ovalbumin is shown to behave commensurable to the 'polymer-induced liquid precursor' (PILP) process proposed by Gower et al. Ovalbumin can be assumed to take a key role during eggshell formation where it serves as an effective stabilization agent for transient precursors and prevents undirected mineralization of the eggshell. (b) It is further shown that the emulsified LACC carries a negative surface charge and is electrostatically stabilized. (c) We propose that the liquid amorphous calcium carbonate is affected by polymers by depletion stabilization and de-emulsification rather than 'induced' by acidic proteins and polymers during a so-called polymer-induced liquid-precursor process. The original PILP coating effect, first reported by Gower et al., appears to be a result of a de-emulsification process of a stabilized LACC phase. The behavior of the liquid amorphous carbonate phase and the polymer-induced liquid-precursor phase itself can be well described by colloid chemical terms: electrostatic and depletion stabilization and de-emulsification by depletion destabilization. KW - Biomineralisation KW - Calcium carbonate KW - PILP KW - LACC PY - 2011 U6 - https://doi.org/10.1021/ja202622g SN - 0002-7863 SN - 1520-5126 VL - 133 IS - 32 SP - 12642 EP - 12649 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kreft, B. A1 - Bednarczyk, M. A1 - Emmerling, Franziska A1 - Marsch, W.C. T1 - Cutaneous-subcutaneous pseudolymphoma after specific immunotherapy with grass-rye pollen-allergen extract containing aluminium hydroxide N2 - Allergen-specific immunotherapy is an important treatment procedure in IgE-mediated allergic diseases such as allergic rhinitis or insect toxin allergies. A reduction in the clinical reaction to the allergens to which the patient is known to be sensitized is intended by means of antigen-specific influence on the immune system. The allergenspecific immunotherapy can be applied by subcutaneous injections, and for selected allergens by means of sublingual application of the appropriate allergen. Occasionally, the injection of aluminium hydroxide-adsorbed sera induces a usually transient formation of granulomas. We are reporting on a rare case of cutaneous-subcutaneous pseudolymphoma in the injection area of both upper arms, probably induced by subcutaneous allergen-specific immunotherapy. KW - Allergen-specific immunotherapy KW - Pseudolymphoma KW - Aluminium hydroxide PY - 2011 SN - 1642-395X VL - XXVIII IS - 2 SP - 134 EP - 137 PB - Termedia Wydawnictwa Med. CY - Pozna´n AN - OPUS4-24629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belombe, M.M. A1 - Nenwa, J. A1 - Emmerling, Franziska T1 - Stacking structure of quinolinium hydrogensquarate N2 - A new proton-transfer organic salt, quinolinium hydrogensquarate (C13H9NO4), has been synthesized and fully characterized by single crystal x-ray diffraction. The salt crystallizes in the monoclinic space group P21/n with the parameters: a = 3.8290(12) Å, b = 20.960(6) Å, c = 13.802(4) Å, β = 95.452(5)°, V = 1102.7(6) Å3, Z = 4 formula units. The structure consists of uncommon supramolecular neutral dimers which pile up parallel to [100] forming infinite sheets. These centrosymmetric dimers are held together by lateral hydrogen-bonds whereby two neighboring coplanar hydrogensquarate anions act as a bridge between two terminal quinolinium cations and C-H...O bridgings interlink next neighboring sheets. The bulk structure of this salt is consolidated by weak π–π interactions within the sheets which are neatly ordered side-by-side relative to one another. KW - Quinolinium squarate KW - Supramolecular dimer KW - Crystal structure KW - Proton-transfer salt PY - 2011 SN - 0973-4945 VL - 8 IS - 2 SP - 603 EP - 608 CY - Tamil Nadu AN - OPUS4-24627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Urs A1 - Schlegel, Moritz-Caspar A1 - Emmerling, Franziska T1 - Advanced techniques for studying damage mechanisms of cementitious matrices affected by sulfate attack N2 - Cementitious materials, in particular concrete, are durable materials if prepared appropriately and the Service life of concrete structures is now often required to last 120 years or more. Concrete durability depends strongly on intrinsic (e.g. composition, porosity) and exterior factors (e.g. moisture condition and composition, frost cycles, load pattem). Deleterious actions leading to concrete degradation are often created by the environment. Extemal sulfate attack is one of the more spectacular damage scenarios for concrete structures caused by the ingress of sulfate ions into the pore System of the material and successive formation of expanding phases. Though in recent years well studied there are still many questions remaining conceming the mechanisms of sulfate attack. In particular over the last ten years, with the increased utilization of blended cements, new questions arose concerning the sulfate resistance of those binder Systems. In the presented study therefore a method was developed to analyze the changes of the phase composition within the micro structure due to sulfate attack. The analytical method was based on pX-Ray diffraction (pXRD) using Synchrotron radiation in Debye-Scherrer (transmission) geometry. The spatial resolution of the method is ca. 10 pm and allows the characterization of phase transformations in the wake of damaging processes in more detail compared to other techniques. Furthermore, the experimental setup provides the possibility for analyzing the phase assemblage of a given sample without destroying the micro structure. This is possible because the specimens for phase analysis consists of thick sections, which can be used for further microscopic analysis of the micro structure and micro chemistry (e.g. by SEM-EDX). Samples containing supplementary cementitious materials were measured in comparison and to reconstruct the influence of the degradation process in detail. Additionally, reaction ffonts within the samples were localized by micro x-ray fluorescence analysis (MXRF). T2 - EMABM 2011 - 13th Euroseminar on microscopy applied to building materials CY - Ljubljana, Slovenia DA - 14.06.2011 KW - Sulfate attack KW - Concrete KW - Synchrotron KW - XRD KW - Phase analysis PY - 2011 SN - 978-961-90366-7-9 SP - 1 EP - 9 AN - OPUS4-24878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Becker, Roland A1 - Nehls, Irene T1 - Isopropyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside N2 - The title compound, C17H26O10, was formed by a Koenigs-Knorr reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and propan-2-ol. The central ring adopts a chair conformation. The crystal does not contain any significant intermolecular interactions. PY - 2013 U6 - https://doi.org/10.1107/S1600536812051483 SN - 1600-5368 VL - 69 IS - Part 2 SP - o157, sup-1 - sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-27572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehls, Irene A1 - Hanebeck, Olaf A1 - Becker, Roland A1 - Emmerling, Franziska T1 - N-(beta-carboxyethyl)-alpha-isoleucine N2 - The title compound, {2-[(2-carbamoylethyl)amino]-3-methylpentanoic acid}, C9H18N2O3, is of interest with respect to its biological activity. It was formed during an addition reaction between acrylamide and the amino acid isoleucine. The crystal structure is a three-dimensional network built up by intermolecular N–H···O and O–H···N hydrogen bonds. KW - Acrylamid KW - Isoleucin KW - Derivatisierung PY - 2013 U6 - https://doi.org/10.1107/S160053681205146X SN - 1600-5368 VL - 69 IS - Part 2 SP - o172-o173, sup-1 - sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-27573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Emmerling, Franziska A1 - Koch, Matthias T1 - rac-2,3-Dibromopropionamide N2 - The racemic title compound, C3H5Br2NO, was crystallized from methanol. In the crystal, adjacent molecules are linked through N–H···O hydrogen bonds, forming chains along the c-axis direction. These chains are linked through N–H···O hydrogen bonds, forming an undulating two-dimensional network lying parallel to the bc plane. There are also short Br···Br contacts present [3.514 (3) Å]. PY - 2013 U6 - https://doi.org/10.1107/S160053681205132X SN - 1600-5368 VL - 69 IS - Part 2 SP - o151, sup-1 EP - sup-5 PB - Munksgaard CY - Copenhagen AN - OPUS4-27574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Becker, Roland A1 - Nehls, Irene T1 - n-Propyl 2,3,4,6-tetra-O-acetyl-beta-D-glucopyranoside N2 - The title compound [systematic name: (2R,3R,4S,5R,6R) 2-(acetoxymethyl)-6-propoxytetrahydro-2H-pyran-3,4,5-triyl triacetate], C17H26O10, was formed by a Koenigs-Knorr reaction of 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and n-propanol. The central ring adopts a chair conformation. The crystal does not contain any significant interactions such as hydrogen bonds. PY - 2013 U6 - https://doi.org/10.1107/S1600536812051495 SN - 1600-5368 VL - 69 IS - Part 2 SP - o158, sup-1 - sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-27439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simo, A. A1 - Polte, Jörg A1 - Pfänder, N. A1 - Vainio, U. A1 - Emmerling, Franziska A1 - Rademann, K. T1 - Formation mechanism of silver nanoparticles stabilized in glassy matrices N2 - In any given matrix control over the final particle size distribution requires a constitutive understanding of the mechanisms and kinetics of the particle evolution. In this contribution we report on the formation mechanism of silver nanoparticles embedded in a soda-lime silicate glass matrix. For the silver ion-exchanged glass it is shown that at temperatures below 410 °C only molecular clusters (diameter <1 nm) are forming which are most likely silver dimers. These clusters grow to nanoparticles (diameter >1 nm) by annealing above this threshold temperature of 410 °C. It is evidenced that the growth and thus the final silver nanoparticle size are determined by matrix-assisted reduction mechanisms. As a consequence, particle growth proceeds after the initial formation of stable clusters by addition of silver monomers which diffuse from the glass matrix. This is in contrast to the widely accepted concept of particle growth in metal–glass systems, in which it is assumed that the nanoparticle formation is predominantly governed by Ostwald ripening processes. PY - 2012 U6 - https://doi.org/10.1021/ja309034n SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 45 SP - 18824 EP - 18833 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zink, N. A1 - Emmerling, Franziska A1 - Häger, T. A1 - Panthöfer, M. A1 - Tahir, M.N. A1 - Kolb, U. A1 - Tremel, W. T1 - Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area N2 - Thermal decomposition of Zr(C2O4)2·4H2O within an autoclave or in a conventional tube furnace at temperatures below 380 °C resulted in nano- and micron-sized ZrO2, respectively. Reactions under autogenic pressure yielded monodisperse monoclinic (m) and tetragonal (t) ZrO2 nanoparticles with an average diameter of ~8 nm and interconnected t-ZrO2 nanoparticles with diameters of ~4 nm, depending on the synthesis temperature. Samples were characterised by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) associated with energy dispersive X-ray spectroscopy (EDS), Raman microspectroscopy and photoluminescence spectroscopy (PL). Nanostructured zirconia materials exhibited high specific areas of 276–385 m2 g-1 which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nanoparticles with diameters of 6–9 nm, i.e. above the critical particle size of 6 nm for the formation of t-ZrO2, demonstrated that the particle size is not the only factor for stabilisation of the t-ZrO2 modification at room temperature. PY - 2013 U6 - https://doi.org/10.1039/c2dt12496c SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 42 SP - 432 EP - 440 PB - RSC CY - Cambridge AN - OPUS4-27733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gnutzmann, Tanja A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Fast crystallization of organic glass formers N2 - An unusually fast crystallization of the organic glass former nifedipine has been observed. The crystallization process, starting from an amorphous film to crystalline material, was investigated by time resolved Raman microspectroscopy. The crystallization rates of the initially crystallizing metastable β-form are four orders of magnitude higher than those of previous studies. KW - Polymorphism KW - Raman spectroscopy KW - Crystallization KW - Nifedipine PY - 2012 U6 - https://doi.org/10.1039/c1cc16301a SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 48 SP - 1638 EP - 1640 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-27735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merkel, Stefan A1 - Köppen, Robert A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Ergotaminine N2 - The title compound {systematic name: (6aR,9S)-N-[(2R,5S,10aS,10bS)-5-benzyl-10b-hydroxy-2-methyl-3,6-dioxooctahydro-8H-oxazolo[3,2-a]pyrrolo[2,1-c]pyrazin-2-yl]-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide}, C33H35N5O5, was formed by an epimerization reaction of ergotamine. The non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar [maximum deviation = 0.317 (4) Å] and shows an envelope conformation, whereas ring D, involved in an intramolecular N–H···N hydrogen bond exhibits a slightly distorted chair conformation. The structure displays chains running approximately parallel to the diagonal of bc plane that are formed through N–H···O hydrogen bonds. PY - 2012 U6 - https://doi.org/10.1107/S1600536812003674 SN - 1600-5368 VL - 68 IS - 3 SP - o610-o611, sup1-sup11 PB - Munksgaard CY - Copenhagen AN - OPUS4-25452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarfraz, Adnan A1 - Simo, A. A1 - Fenger, R. A1 - Christen, W. A1 - Rademann, K. A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Morphological diversity of caffeine on surfaces: needles and hexagons N2 - A systematic crystal morphology study on the pharmaceutical model compound caffeine has been conducted on different surfaces: silicon, silver, soda lime glass, and silver subsurface ion-exchanged soda-lime silicate (SIMO) glasses. The morphology of the solid caffeine deposits has been investigated using environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Needle-shaped caffeine crystals have been observed by drop-casting and also by applying the rapid expansion of supercritical solutions (RESS) technique using supercritical carbon dioxide. The aspect ratio of the crystalline needles typically vary between 10 and 100, but have been observed as large as 500. The XRD data of the RESS products indicate unambiguously the presence of the thermodynamically most stable polymorph of caffeine known as the β-form. Under defined conditions we observe a unique, surface-mediated morphology for caffeine crystals with nearly perfect hexagonal shape. The relative fraction of the hexagons was seen to strongly increase especially when SIMO glasses were used. These hexagons have a distinct upper size limit depending on the solvent and substrate being used. The size distribution analysis of the hexagons yielded an average perimeter of typically 10 µm. The mechanism of the formation process of this new hexagonal motif is explained in terms of the spinodal dewetting of the thin film of caffeine solution on the surface. KW - Caffeine KW - Silicon KW - Silver KW - Ion exchanged soda lime silicate glass KW - ESEM KW - AFM KW - X-ray diffraction KW - RESS KW - Carbon dioxide KW - Supercritical fluids PY - 2012 U6 - https://doi.org/10.1021/cg101358q SN - 1528-7483 VL - 12 IS - 2 SP - 583 EP - 588 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-25457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Riedel, Juliane A1 - Emmerling, Franziska A1 - Koch, Matthias T1 - (3S,11Z)-14,16-dihydroxy-3-methyl-3,4,5,6,9,10-hexahydro-1H-2-benz-oxacyclotetradecine-1,7(8H)-dione (cis-zearalenone): a redetermination N2 - The title compound, also known as cis-zearalenone (cis-ZEN), C18H22O5, has already been reported elsewhere [Griffin et al. (1981). ACA Ser. 29, 35], but no atomic coordinates are publicly available. The molecule is of interest with respect to its toxicity. In the crystal, intramolecular O—H···O hydrogen bonds stabilize the molecular conformation, while intermolecular O—H···O hydrogen bonds link the molecules to form infinite chains along the [110] and [1¯10] directions. The absolute configuration has been assigned by reference to an unchanging chiral centre in the synthetic procedure. PY - 2012 U6 - https://doi.org/10.1107/S1600536812002735 SN - 1600-5368 VL - 68 IS - 3 SP - o832, sup1 EP - sup8 PB - Munksgaard CY - Copenhagen AN - OPUS4-25546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Emmerling, Franziska A1 - Koch, Matthias T1 - rac-1-(2-aminocarbonyl-2-bromoethyl)-pyridinium bromide N2 - In the crystal structure of the title compound, C8H10BrN2O+·-Br–, intermolecular N—H···Br hydrogen bonds link the molecules into infinite chains along [001]. The inclined angle between the pyridine ring plane and the plane defined by the acid amide group is 63.97 (4)°. PY - 2012 U6 - https://doi.org/10.1107/S1600536812019721 SN - 1600-5368 VL - 68 IS - 6 SP - o1666, sup1 EP - sup5 PB - Munksgaard CY - Copenhagen AN - OPUS4-25894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Wenzel, Klaus-Jürgen A1 - Sarfraz, Adnan A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - A wall-free climate unit for acoustic levitators N2 - Acoustic levitation represents the physical background of trapping a sample in a standing acoustic wave with no contact to the wave generating device. For the last three decades, sample holders based on this effect have been commonly used for contact free handling of samples coupled with a number of analytical techniques. In this study, a wall-free climate unit is presented, which allows the control of the environmental conditions of suspended samples. The insulation is based on a continuous cold/hot gas flow around the sample and thus does not require any additional isolation material. This provides a direct access to the levitated sample and circumvents any influence of the climate unit material to the running analyses. KW - Acoustic levition PY - 2012 U6 - https://doi.org/10.1063/1.4705968 SN - 0034-6748 SN - 1089-7623 VL - 83 IS - 5 SP - 055101-1 - 055101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-25881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Sarfraz, Adnan A1 - Müller, Urs A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Erste Sekunden im Leben eines Bauwerks - In-situ-Synchrotron-Röntgenbeugungsuntersuchungen der Zementhydratation mit Millisekunden-Auflösung N2 - Höchst dynamische Hydratationsprozesse in den ersten Sekunden bei der Entstehung eines Bauwerkes lassen sich mithilfe von Synchrotron-Röntgenbeugung mit einer sehr hohen Zeitauflösung nachverfolgen. Der Schwerpunkt lag dabei auf der Beeinflussung der Bildung erster kristalliner Hydratationsprodukte während des Frühstadiums der Zementhydratation. KW - SyXRD KW - High resolution KW - In-situ KW - Colloidal suspension KW - Cement hydration KW - In-situ-Analyse KW - Kolloidale Suspensionen KW - Röntgenbeugung KW - Zementhydratation PY - 2012 U6 - https://doi.org/10.1002/ange.201200993 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 124 IS - 20 SP - 5078 EP - 5081 PB - Wiley-VCH CY - Weinheim AN - OPUS4-26284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gorelik, T.E. A1 - Sarfraz, Adnan A1 - Kolb, U. A1 - Emmerling, Franziska A1 - Rademann, Klaus T1 - Detecting crystalline nonequilibrium phases on the nanometer scale N2 - The use of Automated electron Diffraction Tomography (ADT) is presented as a novel approach for crystallization studies at the nanometer scale for nonequilibrium phases. Here, ADT was applied to elucidate the structural identity of the recently reported hexagonal morphology of caffeine crystals, which grow only on specific surfaces. Caffeine was crystallized from solution on a specially treated TEM carbon grid. The analysis of ADT data revealed that the lattice parameters of these hexagons match those of the high temperature α-form of caffeine. Furthermore, it was observed that in this hexagonal morphology, the α-form remained stable for a prolonged period of time. The stabilization of hexagons can be interpreted in terms of enhanced interactions with the supporting surfaces. KW - Electron diffraction KW - Polymorphism caffeine KW - ADT PY - 2012 U6 - https://doi.org/10.1021/cg300377j SN - 1528-7483 VL - 12 IS - 6 SP - 3239 EP - 3242 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-26285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heiden, Sebastian A1 - Batzdorf, Lisa A1 - Wenzel, Klaus-Jürgen A1 - Emmerling, Franziska T1 - Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1:1) N2 - The structure of a mechanochemically synthesised cocrystal containing theophylline (TP) and benzoic acid (BA) has been determined from powder X-ray diffraction data. PY - 2012 U6 - https://doi.org/10.1039/c2ce25236h SN - 1466-8033 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. VL - 14 IS - 16 SP - 5128 EP - 5129 CY - London, UK AN - OPUS4-26286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Sarfraz, Adnan A1 - Müller, Urs A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - First seconds in a building's life - In situ synchrotron X-ray diffraction study of cement hydration on the millisecond timescale N2 - Setting cement: Highly dynamic hydration processes that occur during the first seconds of cement hydration were studied by time-resolved synchrotron X-ray diffraction. Polycarboxylate ether additives were found to influence the formation of the initial crystalline hydration products on a molecular level. KW - Cement hydration KW - Colloidal suspensions KW - In situ analysis KW - X-ray diffraction KW - SyXRD KW - High resolution KW - In-situ PY - 2012 U6 - https://doi.org/10.1002/anie.201200993 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 51 IS - 20 SP - 4993 EP - 4996 PB - Wiley-VCH CY - Weinheim AN - OPUS4-26287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Fischer, A. A1 - Chuenchom, L. A1 - Polte, Jörg A1 - Emmerling, Franziska A1 - Smarsly, B.M. A1 - Kraehnert, R. T1 - New triblock copolymer templates, PEO-PB-PEO, for the synthesis of titania films with controlles mesopore size, wall thickness, and bimodal porosity N2 - The synthesis and properties of a series of new structure-directing triblock copolymers with PEO-PB-PEO structure (PEO = poly(ethylene oxide) and PB = polybutadiene) and their application as superior pore-templates for the preparation of mesoporous titania coatings are reported. Starting from either TiCl4 or from preformed TiO2 nanocrystalline building blocks, mesoporous crystalline titanium oxide films with a significant degree of mesoscopic ordered pores are derived, and the pore size can be controlled by the molecular mass of the template polymer. Moreover, the triblock copolymers form stable micelles already at very low concentration, i.e., prior to solvent evaporation during the evaporation-induced self-assembly process (EISA). Consequently, the thickness of pore walls can be controlled independently of pore size by changing the polymer-to-precursor ratio. Thus, unprecedented control of wall thickness in the structure of mesoporous oxide coatings is achieved. In addition, the micelle formation of the new template polymers is sufficiently distinct from that of typical commercial PPO-PEO-PPO polymers (Pluronics; PPO = poly(propylene oxide)), so that a combination of both polymers facilitates bimodal porosity via dual micelle templating. KW - Mesoporous materials KW - Titanium oxide films KW - Anatase nanoparticles KW - PEO-PB-PEO KW - Dual templating PY - 2012 U6 - https://doi.org/10.1002/smll.201101520 SN - 1613-6810 SN - 1613-6829 VL - 8 IS - 2 SP - 298 EP - 309 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Som, T. A1 - Simo, A. A1 - Fenger, R. A1 - Troppenz, G.V. A1 - Bansen, R. A1 - Pfänder, N. A1 - Emmerling, Franziska A1 - Rappich, J. A1 - Boeck, T. A1 - Rademann, K. T1 - Bismuth hexagons: facile mass synthesis, stability and applications N2 - A unique direct electrodeposition technique involving very high current densities, high voltages and high electrolyte concentrations is applied for highly selective mass synthesis of stable, isolable, surfactant-free, single-crystalline Bi hexagons on a Cu wire at room temperature. A formation mechanism of the hexagons is proposed. The morphology, phase purity, and crystallinity of the material are well characterized by FESEM, AFM, TEM, SAED, EDX, XRD, and Raman spectroscopy. The thermal stability of the material under intense electron beam and intense laser light irradiation is studied. The chemical stability of elemental Bi in nitric acid shows different dissolution rates for different morphologies. This effect enables a second way for the selective fabrication of Bi hexagons. Bi hexagons can be oxidized exclusively to α-Bi2O3 hexagons. The Bi hexagons are found to be promising for thermoelectric applications. They are also catalytically active, inducing the reduction of 4-nitrophenol to 4-aminophenol. This electrodeposition methodology has also been demonstrated to be applicable for synthesis of bismuth-based bimetallic hybrid composites for advanced applications. KW - Bismuth KW - Hexagons KW - Dendrites KW - Single-crystal KW - Thermoelectric applications KW - Catalytic applications PY - 2012 U6 - https://doi.org/10.1002/cphc.201101009 SN - 1439-4235 VL - 13 IS - 8 SP - 2162 EP - 2169 PB - Wiley-VCH CY - Weinheim AN - OPUS4-26278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Noll, B. A1 - Noll, S. A1 - Pietzsch, H.-J. T1 - Two mononuclear Tc complexes: [2,2'-(3-phenylpropylimino)- and [2,2'-(propylimino)bis(ethanethiolato)](4-methoxybenzenethiolato)-oxidotechnate(V) PY - 2007 U6 - https://doi.org/10.1107/S0108270107052870 SN - 0108-2701 SN - 1600-5759 VL - 63 IS - 12 SP - m579 EP - m582 PB - Blackwell Publ. CY - Oxford AN - OPUS4-16283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Kley, Gerd A1 - Adam, Karin A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - New horizons of the structural characterization of stainless steel slags by X-ray powder diffraction KW - AOD slag KW - Metal recovery KW - Metallurgy KW - Rietveld method KW - Slags KW - Stainless steel slags KW - Quantitative phase analysis (QPA) PY - 2007 SN - 0930-486X VL - 26 SP - 61 EP - 66 PB - Oldenbourg CY - München AN - OPUS4-16666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Wolf, S. E. A1 - Leiterer, Jork A1 - Kappl, M. A1 - Tremel, W. T1 - New insight into the crystallization process of calcium carbonate by a contact-free in situ scattering technique using a levitating drop method T2 - 14. Vortragstagung Gesellschaft Deutscher Chemiker CY - Bayreuth, Germany DA - 2008-09-24 PY - 2008 AN - OPUS4-17954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orgzall, I. A1 - Emmerling, Franziska A1 - Schulz, B. A1 - Franco, O. T1 - High-pressure studies on molecular crystals - relations between structure and high-pressure behavior N2 - This paper summarizes attempts to understand structure–property relationships for a large class of aromatic diphenyl-1,3,4-oxadiazole molecules. Starting from the investigation of the crystal structure several common packing motifs as well as characteristic differences are derived. Many different molecules show a rather planar conformation in the solid state. A stronger intermolecular twist is only observed for compounds with substituents occupying the ortho-positions of the phenyl rings. Most crystal structures are characterized by the formation of stacks leading to intense π–π acceptor–donor interactions between oxadiazole and phenyl rings. High-pressure investigations result in a soft compression behavior typical for organic molecular crystals. The bulk behavior may be described by the Murnaghan equation of state with similar coefficients (bulk modulus and its pressure derivative) for nearly all investigated compounds but also for related substances. The compression shows a strong anisotropy resulting from the specific features and packing motifs of the crystal structure. This is clearly indicated by a corresponding strain analysis. Additionally to the crystal structure the Raman spectrum was also investigated under increasing pressure. The different pressure behavior of external and internal modes reflects the difference between intra- and intermolecular interactions. KW - Diphenyl-1,3,4-oxadiazole KW - Crystal structure KW - High pressure investigations KW - Equation of state KW - Strain analysis KW - Raman investigations PY - 2008 U6 - https://doi.org/10.1088/0953-8984/20/29/295206 SN - 0953-8984 SN - 1361-648X VL - 20 SP - 295206-1 - 295206-15 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-17784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Emmerling, Franziska A1 - Kohl, Anka A1 - Becker, Roland T1 - Delta-Hexabromocyclododecane N2 - (1R,2S,5R,6S,9S,10R)-Hexabromocyclododecane (C12H18Br6, d-HBCD) was crystallized from acetonitrile. The C—Br distances range from 1.962 (8) to 1.982 (8) Å and intermolecular Br...Br contacts contribute to the formation of layers. PY - 2007 U6 - https://doi.org/10.1107/S1600536807026396 SN - 1600-5368 VL - 63 IS - 7 SP - o3105 PB - Munksgaard CY - Copenhagen AN - OPUS4-15048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paris, O. A1 - Li, C. A1 - Siegel, S. A1 - Weseloh, G. A1 - Emmerling, Franziska A1 - Riesemeier, Heinrich A1 - Erko, A. A1 - Fratzl, P. T1 - A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II N2 - A new instrument for simultaneous microbeam small- and wide-angle X-ray scattering and X-ray fluorescence (SAXS/WAXS/XRF) is presented. The instrument is installed at the microfocus beamline at BESSY II and provides a beam of 10 µm size with a flux of about 109 photons s-1. A SAXS resolution up to 500 Å d-spacing and a range of scattering vectors of almost three orders of magnitude are reached by using a large-area high-resolution CCD-based detector for simultaneous SAXS/WAXS. The instrument is particularly suited for scanning SAXS/WAXS/XRF experiments on hierarchically structured biological tissues. The necessary infrastructure, such as a cryo-stream facility and an on-site preparation laboratory for biological specimens, are available. KW - Scanning SAXS KW - Scanning WAXS KW - Microbeam KW - Synchrotron radiation PY - 2007 SN - 0021-8898 SN - 1600-5767 VL - 40 IS - Supplement SP - s466 EP - s470 PB - Blackwell CY - Oxford AN - OPUS4-15049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Carvalho, José Joao A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - 7-(5-Carboxypentyl)-1,3-dimethylxanthine monohydrate N2 - The title compound [systematic name: 6-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-7-yl)hexanoic acid monohydrate, CAS 61444-23-3], C13H18N4O4·H2O, was synthesized and crystallized from ethyl acetate. Hydrogen bonds between xanthine and water molecules contribute to the formation of layers parallel to (10). KW - Kristallstruktur KW - Koffein KW - Antikörperentwicklung KW - Biokonjugate PY - 2007 U6 - https://doi.org/10.1107/S1600536807037257 SN - 1600-5368 VL - 63 IS - 9 SP - o3718 PB - Munksgaard CY - Copenhagen AN - OPUS4-15731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Noll, B. A1 - Noll, S. A1 - Pietzsch, H.-J. T1 - (4-Methoxybenzenethiolato-kS)oxido[2,2'-(propylimino)bis-(ethanethiolato)-k3S,N,S']rhenium(V) N2 - The central Re atom of the mononuclear title complex, [Re(C8H18NS2)(C6H4OS)O], is five-coordinate (ReNOS3) with a square-pyramidal geometry comprising a tridentate 2,2'-(propylimino)diethanethiolate ligand, a 4-methoxybenzenethiolate ligand and a doubly-bonded O atom. PY - 2007 U6 - https://doi.org/10.1107/S1600536807056814 SN - 1600-5368 VL - 63 IS - 12 SP - m3018 PB - Munksgaard CY - Copenhagen AN - OPUS4-16196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Reck, Günter A1 - Kraus, Werner A1 - Orgzall, I. A1 - Schulz, B. T1 - Structure determination of two asymmetrically substituted oxadiazoles from powder diffraction data N2 - The crystal structures of the 1,3,4 oxadiazole compounds N,N-dimethyl-N-[4-(1,3,4-oxadiazol-2-yl)phenyl]amine (1) and 2-methyl-5-phenyl-1,3,4-oxadiazole (2) have been determined. In case of 1 no adequate crystals were available; therefore the structure was solved at room temperature from X-ray powder diffraction data using the method of simulated annealing. This solution is compared to a second one obtained by applying the molecular replacement method. Subsequent Rietveld refinements combined with the so called two stage method based on the data collected to 1.6 Å resolution yielded an Rwp value of 7.27% for 1. Compound 1 crystallizes in the orthorhombic space group P212121 with lattice parameters of a = 7.599(4) Å, b = 6.004(2) Å, c = 21.736(3) Å. The crystal structure of 2 was solved by means of single crystal structure analysis (monoclinic space group P21/c, a = 8.010(3) Å, b = 10.783(4) Å, c = 19.234(7) Å, β = 90.794(9)°). KW - Crystal structure KW - Oxadiazoles KW - Powder diffraction X-ray investigations KW - Structure determination PY - 2008 U6 - https://doi.org/10.1002/crat.200711053 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 43 IS - 1 SP - 99 EP - 107 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-16582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Bricks, J. L. A1 - Resch-Genger, Ute A1 - Kraus, Werner A1 - Schulz, Burkhard A1 - Li, Yanqin A1 - Reck, Günter T1 - Influence of the donor substituent and acceptor alkylation on the structure-analytical properties of mono- and bifunctional biphenyl-type fluorescent reporters N2 - A systematic structural investigation of R-phenyl-substituted 2,2':6',2"-terpyridines, a family of mono- and bifunctional charge transfer (CT)-operated fluorescent reporters for protons and metal ions, is presented. These molecules are equipped with non-binding and analyte coordinating donor substituents R (R = CF3, H, OMe, OH, DMA, A15C5 equaling monoaza-15-crown-5) of various donor strength and display CT-controlled spectroscopic properties and communication of analyte–receptor interactions. The crystal structures of the neutral fluorescent probes are compared to the structures of their terpyridine-alkylated or -protonated counterparts that represent model systems for acceptor protonation or cation coordination. The aim is here a better understanding of the complexation-induced structural and spectroscopic changes and the identification of common packing motifs of bpb-R thereby taking into account the importance of terpyridine building blocks for the construction of supramolecular systems and coordination arrays revealing π–π interactions. KW - Biphenyl KW - Terpyridine KW - Crystal structure KW - Fluorescent probe KW - Charge transfer KW - Bifunctional PY - 2008 U6 - https://doi.org/10.1016/j.molstruc.2007.03.025 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 874 IS - 1-3 SP - 14 EP - 27 PB - Elsevier CY - Amsterdam AN - OPUS4-17087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Bélombé, Michel M. A1 - Nenwa, Justin A1 - Bebga, Gouet T1 - Kristallstruktur von Tris(oxamiddioxim-k2N,N')nickel(II) L(+)-Tartrat, [Ni(H2oxado)3][L(+)-(C4H406)] T2 - DGK- Jahrestagung in Bremen 2007 CY - Bremen, Germany DA - 2007-03-05 PY - 2007 AN - OPUS4-14280 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Emmerling, Franziska A1 - Becker, Roland T1 - Decabromodiphenylethane N2 - Decabromo­diphenyl­ethane [systematic name: 1,1'-ethane-1,2-diylbis(penta­bromo­benzene)], C14H4Br10 (DBDPE), was crystallized from toluene. The mol­ecule shows crystallographic inversion symmetry. The C—Br distances are in the range 1.873 (7)–1.891 (6) Å; inter­molecular BrBr contacts contribute to the formation of ribbons. KW - Single-crystal X-ray study KW - T = 273 K KW - R factor = 0.043 KW - wR factor = 0.121 KW - Data-to-parameter ratio = 20.4 PY - 2007 U6 - https://doi.org/10.1107/S1600536807000219 SN - 1600-5368 VL - 63 IS - 2 SP - o585 EP - o586 PB - Munksgaard CY - Copenhagen AN - OPUS4-14565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppen, Robert A1 - Becker, Roland A1 - Emmerling, Franziska A1 - Jung, Christian A1 - Nehls, Irene T1 - HBCD enantiomers: absolute configurations and thermal rearrangement T2 - Organohalogen Compounds PY - 2006 UR - http://www.dioxin20xx.org/pdfs/2006/06-466.pdf VL - 68 SP - 1991 EP - 1994 PB - Norwegian Institute of Public Health AN - OPUS4-14540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Orgzall, I. A1 - Dietzel, B. A1 - Schulz, Burkhard A1 - Reck, Günter A1 - Schulz, B. T1 - Structural studies on trifluoromethyl substituted 2,5-diphenyl-1,3,4-oxadiazoles N2 - Three new compounds have been synthesized based on the molecular motif 2-[2,6-bis(trifluoromethyl)phenyl]-5-phenyl-1,3,4-oxadiazole, with subsequent CF3-substitution in the ortho-positions of the phenylene ring. The crystal structures of the compounds have been determined by single crystal X-ray diffraction. All compounds have a monoclinic structure. The solid state structure of the compounds is influenced by the electronic properties of the fluorine atoms, leading to the occurrence of C–H...F, and C–F...ϖ interactions, partly replacing ϖ–ϖ interactions usually observed in the crystal structures of 2,5-diphenyl-1,3,4-oxadiazole derivatives. Other significant interactions than those involving fluorine appear only in rare cases. The strong impact of the fluorine atoms on the intra- and intermolecular interactions, and the molecular conformation lead to novel inputs for the understanding of molecular recognition, supramolecular assembly, and crystal packing of fluorine containing compounds. KW - Crystal structure KW - 1,3,4-oxadiazole KW - Molecular conformation KW - Weak interactions PY - 2007 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 832 IS - 1-3 SP - 124 EP - 131 PB - Elsevier CY - Amsterdam AN - OPUS4-14644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Engelhardt, S. C. A1 - Frisch, G. A1 - Röhr, C. T1 - Alkalimetalloxoferrate AFeO2 Strukturchemie und Mößbauerspektroskopie T2 - DGK Jahrestagung CY - Berlin, Germany DA - 2007-03-05 PY - 2007 AN - OPUS4-14656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Becker, Roland A1 - Emmerling, Franziska A1 - Jung, Christian A1 - Nehls, Irene T1 - Enantioselective Preparative HPLC Separation of the HBCD-Stereoisomers from the Technical Product and Their Absolute Structure Elucidation Using X-Ray Crystallography N2 - 1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a widely used flame retardant, which tends to persist in the environment and accumulates in biota. The six stereoisomers (three racemates named α-, β-, and γ-HBCD) of the technical mixture were isolated with high-performance liquid chromatography (HPLC). Direct separations were performed on a chiral stationary phase containing permethylated -cyclodextrin (NUCLEODEX -PM column) and the pure enantiomers of α-, β-, and γ-HBCD were physically characterized for the first time. The absolute configurations of all six isomers were determined by anomalous dispersion using single crystal X-ray crystallography. Optical rotations αD in tetrahydrofuran were +4.2/-4.0 (α-HBCD), +26.1/-27.5 (β-HBCD), and +68.0/-66.3 (γ-HBCD). The sense of rotation could be correlated with the absolute configurations of α-, β-, and γ-HBCD enantiomers and their order of elution on a chiral permethylated β-cyclodextrin-bonded stationary phase. The diastereomers α-, β-, and γ-HBCD displayed distinctly different melting points as well as 1H-, 13C NMR, and IR spectra. KW - Brominated flame retardant KW - Chiral separation KW - Anomalous dispersion KW - Crystal structures KW - Optical rotation KW - Absolute configuration PY - 2007 U6 - https://doi.org/10.1002/chir.20366 SN - 0899-0042 SN - 1520-636X VL - 19 IS - 3 SP - 214 EP - 222 PB - Wiley-Liss CY - New York, NY AN - OPUS4-14718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, D. A1 - Descalzo López, Ana Belén A1 - Weik, F. A1 - Emmerling, Franziska A1 - Shen, Z. A1 - You, X.-Z. A1 - Rurack, Knut T1 - Ein kernmodifiziertes Rubyrin mit meso-Aryl-Subsituenten und Phenanthren-anellierten Pyrrolringen als hoch konjugierter NIR-Farbstoff und Hg2+-Sonde KW - Fluoreszenz KW - NIR-Farbstoffe KW - Porphyrinoide KW - Quecksilber KW - Sensoren PY - 2008 U6 - https://doi.org/10.1002/ange.200702854 SN - 0044-8249 SN - 0932-2140 SN - 1521-3757 VL - 120 IS - 1 SP - 199 EP - 203 PB - Wiley-VCH CY - Weinheim AN - OPUS4-16447 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, D. A1 - Descalzo López, Ana Belén A1 - Weik, F. A1 - Emmerling, Franziska A1 - Shen, Z. A1 - You, X.-Z. A1 - Rurack, Knut T1 - A core-modified Rubyrin with meso-aryl substituents and phenanthrene-fused pyrrole rings: a highly conjugated near-infrared dye and Hg2+ probe KW - Fluorescence KW - Mercury KW - NIR dyes KW - Porphyrinoids KW - Sensors PY - 2008 U6 - https://doi.org/10.1002/Anie.200702854 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 47 IS - 1 SP - 193 EP - 197 PB - Wiley-VCH CY - Weinheim AN - OPUS4-16448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, C. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Ikeda, A. A1 - Scheinost, A.C. T1 - Coordination of a Uranium(IV) Sulfate Monomer in an Aqueous Solution and in the Solid State N2 - Uranium(IV) sulfate in an aqueous solution and the solid state has been investigated with extended X-ray absorption fine structure (EXAFS) and X-ray diffraction (XRD). The coordination polyhedron comprises monodentate sulfate, bidentate sulfate, and water molecules. The coordination modes of sulfate in solution have been determined from the U-S distances with EXAFS. The U-S distance of 3.67 ± 0.02 Å indicates monodentate sulfate, and the U-S distance of 3.08 ± 0.02 Å indicates bidentate coordination. The obtained sulfur coordination numbers of a solution with a [SO42-]/[U4+] ratio of 40 suggest species with compositions of [U(SO4,bid)2(SO4,mon)2·nH2O]4- and [U(SO4,bid)3 (SO4,mon)2·mH2O]6-. Charge-compensating countercations or ion pairing with Na+ and NH4+ could not be detected with EXAFS. One of the solution species, [U(SO4)5H2O]6-, has been conserved in a crystal. The corresponding crystal structure of Na1.5(NH4)4.5[U(SO4)5·H2O]·H2O [space group P1, a = 9.4995(16) Å, b = 9.8903(16) Å, c = 12.744(2) Å, α = 93.669(2)°, β = 103.846(2)°, γ = 109.339(2)°] has been determined by single-crystal XRD. Two monomeric uranium(IV) sulfate complexes and three sodium units are linked in alternating rows and form a one-dimensoinal ribbon structure parallel to the a axis. PY - 2008 U6 - https://doi.org/10.1021/ic701880h SN - 0020-1669 SN - 1520-510X VL - 47 IS - 5 SP - 1634 EP - 1638 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thünemann, Andreas A1 - Kegel, Jenny A1 - Polte, Jörg A1 - Emmerling, Franziska T1 - Superparamagnetic Maghemite Nanorods: Analysis by Coupling Field-Flow Fractionation and Small-Angle X-ray Scattering N2 - We report on the online coupling of asymmetrical flow field-flow fractionation (A4F) with small-angle X-ray scattering (SAXS) for the detection of nanoparticles. The A4F was used to fractionate superparamagnetic maghemite nanoparticles, which were prepared continuously with a micromixer. The outlet of the A4F was directly coupled to a flow capillary of a SAXSess instrument (Kratky type of camera). SAXS curves were recorded in a 1 s time interval. This was possible by using intense synchrotron radiation. The radii of gyration of the nanoparticles, as determined from Guinier plots, increased from 2 to 6 nm with increasing fractionation time of the A4F. A more detailed analysis of the scattering curves revealed that the particles were cylindrical in shape (nanorods), which we attributed to the micromixing preparation technique. The radii of the nanorods increased only slightly from 1.2 to 1.7 nm with increasing fractionation time, while the lengths increased strongly from 7.0 to 30.0 nm. The volume distribution of the nanorods was determined and described by Schultz-Zimm and log-normal distributions. Nanorod volumes increased from 45 to 263 nm³, corresponding to molar masses of 140 × 10³ to 820 × 10³ g mol-1. We propose A4F-SAXS coupling as a new method for analysis of nanoparticles of complex composition in solution. It allows precise online determination of the particle’s shape and size distributions. This method can be applied to mixtures of nanoparticles of arbitrary shapes and sizes (1-100 nm). Moreover, the total time needed for fractionation and online SAXS data recording is usually only 20 min. PY - 2008 U6 - https://doi.org/10.1021/ac8004814 SN - 0003-2700 SN - 1520-6882 VL - 80 IS - 15 SP - 5905 EP - 5911 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Christen, W. A1 - Rademann, K. T1 - Tracing Coffee Tabletop Traces N2 - Crystallization processes under different conditions are of fundamental interest in chemistry, pharmacy, and medicine. Therefore, we have studied the formation of micro- and nanosized crystals using water-caffeine (1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione) solutions under ambient conditions as a relevant model system. When droplets of an aqueous caffeine solution evaporate and eventually dry on surfaces (glass, polystyrene, and polyester), stable “coffee tabletop” rings with a perimeter of typically 3 mm are formed after 20 to 50 min. Using a micro focus X-ray beam available at the BESSY µSpot-beamline, the fine structure of different caffeine needles can be distinguished. Unexpectedly, both crystal modifications (α- and β-caffeine) are present, but locally separated in these rings. Furthermore, AFM studies reveal the presence of even smaller particles on a nanometer length scale. To eliminate influences of surface irregularities from the crystallization process, acoustic levitation of liquid samples was employed. Such levitated droplets are trapped in a stable position and only surrounded by air. The solvent in an ultrasonically levitated drop evaporates completely, and the resulting crystallization of caffeine was followed in situ by synchrotron X-ray diffraction. In this case, the diffraction pattern is in accordance with pure α-caffeine and does not indicate the formation of the room temperature polymorph β-caffeine. Hence, our investigations open new vistas that may lead to a controlled formation of cocrystals and novel polymorphs of micro- and nanocrystalline materials, which are of relevance for fundamental studies as well as for pharmaceutical and medical applications. KW - Polymorphism KW - Crystallization KW - Acoustic levitation KW - Evaporation of droplets KW - µSpot KW - Micro spot KW - Synchrotron radiation PY - 2008 U6 - https://doi.org/10.1021/la800768v SN - 0743-7463 SN - 1520-5827 VL - 24 IS - 15 SP - 7970 EP - 7978 PB - American Chemical Society CY - Washington, DC AN - OPUS4-17818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Bentrup, U. A1 - Radnik, J. A1 - Martin, A. A1 - Brückner, A. A1 - Leiterer, Jork A1 - Armbruster, U. T1 - Monitoring von Katalysatorsynthesen mittels simultaner WAXS/SAXS/Raman- und ATR/UV-vis/Raman-Spektroskopie T2 - ProcessNet-Jahrestagung 2008 CY - Karlsruhe, Germany DA - 2008-10-07 PY - 2008 AN - OPUS4-17835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Leiterer, Jork A1 - Wolf, S. E. A1 - Tremel, W. T1 - Contact-free formation of calcium carbonate in a levitated drop: a WAXS / TEM study. T2 - Jahrestagung der Deutschen Gesellschaft für Kristallographie CY - Erlangen, Germany DA - 2008-03-03 PY - 2008 AN - OPUS4-17837 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Díez, I. A1 - Emmerling, Franziska A1 - Malz, Frank A1 - Jäger, Christian A1 - Schulz, B. A1 - Orgzall, I. T1 - Origin of templating processes in polypyrrole synthesis N2 - The supermolecular mechanism of the template-mediated oxidative polymerization of pyrrole is investigated in detail. It is shown for the first time that 2,5-bis(pyrrol-2-yl)pyrrolidyl complexes with aromatic sulfonic acids such as %#946;-naphtalenesulfonic acid or para-toluenesulfonic acid are formed in the early polymerization step. The crystalline acid–base complexes are isolated and their crystal structures are analyzed. A 2,5-bis(pyrrol-2-yl)pyrrolidyl cation is common to both complexes and forms an inner salt with the sulfonic acid anion. As concluded from NMR investigations the synthesis using sulfonic acids results in a high stereo selectivity with respect to the trans conformation of the pyrrolidyl ring compared with the classical synthesis routine of this compound using hydrochloric acid. The needle-like crystals of the complexes act as hard templates during the next step of the polymerization and result in tubular morphologies of the polypyrrole. KW - Polypyrrole KW - Pyrrole complex PY - 2008 U6 - https://doi.org/10.1016/j.matchemphys.2008.05.057 SN - 0254-0584 VL - 112 IS - 1 SP - 154 EP - 161 PB - Elsevier CY - Amsterdam AN - OPUS4-17859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Becker, Roland A1 - Reck, Günter T1 - Mixed crystal of bis(µ2-N,N-di-n-butyldithiocarbamato-S,S,S')-bis(N,N-di-n-butyldithiocarbamato-S,S')-di-zinc(II) and bis(µ2-N,N-di-n-butyldithiopercarbamato-S,O,O')-bis(N,N-di-n-butyldithiocarbamato-S,S')-di-zinc(II) N2 - The title compounds Zn2[S2CN(n-C4H9)2]4 1 and Zn2[(S(SO)CN(n-C4H9)2)(S2CN(n-C4H9)2)]2 3 build mixed crystals in the ratio 0.42: 0.58. Each compound forms dimers, in which the monomer moieties are related via a two-fold axis, coinciding with that of the monoclinic space group C2/c. The lattice parameters are a = 23.581(9), b = 17.112(5), c = 16.372(9) Å, and β = 128.33(3)°. KW - Crystal structure KW - Zinc KW - Dithiocarbamate KW - Dithiopercarbamate PY - 2007 U6 - https://doi.org/10.1002/crat.200710956 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 42 IS - 10 SP - 1018 EP - 1023 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-17843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Radnik, J. A1 - Schneider, M. A1 - Bentrup, U. A1 - Armbruster, U. A1 - Brückner, A. A1 - Leiterer, Jork A1 - Martin, A. T1 - New experimental setup for on-line monitoring of mixed oxide catalyst synthesis at the µ-Spot Beamline at BESSY II T2 - 18th Users' Meeting at the ESRF CY - Grenoble, France DA - 2008-02-05 PY - 2008 AN - OPUS4-17849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gniazdowska, E. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Spies, H. A1 - Stephan, H. T1 - Tetrabutylammonium bis(2-amidobenzenethiolato-kappa2S,N)oxorhenate(V) N2 - The structure of the title compound, (C16H36N)[Re(C6H5NS)2O], is isomorphous with the corresponding oxotechnetate(V) complex. KW - Coordination chemistry KW - Rhenium KW - Organometallic PY - 2006 U6 - https://doi.org/10.1107/S160053680601511X SN - 1600-5368 VL - 62 IS - 6 SP - m1197 EP - m1199 PB - Munksgaard CY - Copenhagen AN - OPUS4-12345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Iqbal, I. A1 - Müller, C. A1 - Röllich, A. A1 - Stephan, H. T1 - Polyoxotungstates as potent inhibitors for ecto-nucleotidases T2 - 37th International Conference of Coordination Chemistry CY - Cape Town, South Africa DA - 2006-08-13 PY - 2006 AN - OPUS4-12401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Orgzall, I. A1 - Schulz, B. T1 - Structures of ligands for the construction of metal-organic compounds: substitudes di-aryl-1,3,4-oxadiazole derivatives with pyridyl- and aminophenyl-substitution T2 - Tag der Chemie, Technical University Berlin CY - Berlin, Germany DA - 2006-06-26 PY - 2006 AN - OPUS4-12402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Müller, Urs A1 - Malaga, Katarina A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Spatially resolved investigation of complex multi-phase systems using muXRF, SEM-EDX and high resolution SyXRD N2 - Spatially resolved analysis of complex multi-phase systems can be validated through different analytical methods. This study compares investigations by scanning electron microscopy coupled with energy dispersive X-ray fluorescence analysis and high resolution X-ray diffraction. The studied sulfate attacked cement paste containing fly ashes consists of different interacting crystalline and amorphous phases. The complementary methods revealed in detail changes in phase composition due to the chemical attack. The advantages and disadvantages of both methods are discussed and suggestions are given for combining them with additional methods to maximize the information content. KW - EDX-SEM KW - SyXRD KW - Spatial investigations KW - Comparison KW - High resolution KW - Cement paste KW - Sulfate attack KW - Damaging mechanism PY - 2013 U6 - https://doi.org/10.1016/j.cemconcomp.2012.08.018 SN - 0958-9465 SN - 1873-393X VL - 37 SP - 241 EP - 245 PB - Elsevier Ltd. CY - Barking, Essex AN - OPUS4-29111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Bernsmeier, D. A1 - Polte, J. A1 - Strasser, P. A1 - Vainio, U. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Micelle-templated oxides and carbonates of zinc, cobalt, and aluminium and a generalized strategy for their synthesis N2 - Catalysis, energy storage, and light harvesting require functional materials with tailored porosity and nanostructure. However, common synthesis methods that employ polymer micelles as structure-directing agents fail for zinc oxide, for cobalt oxide, and for metal carbonates in general. We report the synthesis of the oxides and carbonates of zinc, cobalt, and aluminum with micelle-templated structure. The synthesis relies on poly(ethylene oxide)-block-poly(butadiene)-block-poly(ethylene oxide) triblock copolymers and a new type of precursor formed by chemical complexation of a metal nitrate with citric acid. A general synthesis mechanism is deduced. Mechanistic insights allow for the prediction of optimal processing conditions for different oxides and carbonates based on simple thermogravimetric analysis. Employing this synthesis, films of ZnO and Co3O4 with micelle-controlled mesoporosity become accessible for the first time. It is the only soft-templating method reported so far that also yields mesoporous metal carbonates. The developed synthesis is generic in nature and can be applied to many other metal oxides and carbonates. KW - EISA KW - Pore templating KW - Metal oxide KW - Metal carbonate KW - Zinc oxide KW - Cobalt oxide PY - 2013 U6 - https://doi.org/10.1021/cm400535d SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 14 SP - 2749 EP - 2758 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eißler, A. A1 - Kläring, P. A1 - Emmerling, Franziska A1 - Braun, T. T1 - Alpha-dialdimine complexes of rhodium(I) and iridium(I): Their reactivity with dioxygen and dihydrogen N2 - The rhodium(I) and iridium(I) complexes [M(Cl){ArN=C(H)C(H)=NAr}(CNtBu)] (1: M = Rh, Ar = 2,6-iPr2C6H3; 2: M = Rh, Ar = Mes; 3: M = Ir, Ar = Mes; Mes = 2,4,6-Me3C6H2) have been prepared by the reaction of [M(µ-Cl)(coe)2]2 (M = Rh, Ir; coe = cyclooctene) with the α-dialdimines ArN=C(H)C(H)=NAr (Ar = 2,6-iPr2C6H3, Mes) in thf, followed by the addition of CNtBu. XANES spectra and DFT calculations on 2 and 3 suggest an oxidation state +I at the metal centers. Treatment of the complexes 2 and 3 with O2 or 18O2 gave the peroxido complexes [M(Cl)(O2){MesN=C(H)C(H)=NMes}(CNtBu)] (4a: M = Rh; 5a: M = Ir) and [M(Cl)(18O2){MesN=C(H)C(H)=NMes}(CNtBu)] (4b: M = Rh; 5b: M = Ir). The reaction of 3 with dihydrogen resulted in the formation of the iridium dihydrido complex [Ir(Cl)(H)2{MesN=C(H)C(H)=NMes}(CNtBu)] (6a). Two isomeric α-imine-amine complexes [Ir(Cl)(H)2{MesN(H)CH2C(H)=NMe}(CNtBu)] (7/7') were obtained after prolonged reaction under H2. All of the complexes were characterized by NMR and IR spectroscopy. In addition, complexes 2, 3,and 7 were characterized by X-ray crystallography. KW - Rhodium KW - Iridium KW - Aldimines KW - Peroxido ligands KW - Hydrido ligands PY - 2013 U6 - https://doi.org/10.1002/ejic.201300625 SN - 1434-1948 SN - 1099-0682 VL - 2013 IS - 27 SP - 4775 EP - 4788 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Dreger, M. A1 - Kemnitz, E. T1 - Mechanochemical synthesis and characterization of hydrated and dehydrated crystalline strontium terephtalates N2 - A successful mechanochemical synthesis of strontium terephthalate trihydrate is described for the first time. The dehydration of Sr(C8H4O4)·3H2O occurs at about 100 °C and results in a well-defined strontium terephtalate, Sr(C8H4O4), thermally stable up to 550 °C. Both compounds are not described so far in the literature. Their structures were solved by ab initio structure determination and subsequent Rietveld refinement of the powder diffraction data. Further methods like DTA-TG, MAS NMR and FT-IR spectroscopy, and BET measurements were used to characterize these compounds. KW - Mechanochemical synthesis KW - Ab initio structure determination KW - MAS NMR spectroscopy KW - Strontium PY - 2013 U6 - https://doi.org/10.1002/zaac.201200550 SN - 0044-2313 SN - 1521-3749 SN - 0372-7874 SN - 0863-1786 SN - 0863-1778 VL - 639 IS - 5 SP - 689 EP - 693 PB - Wiley-VCH CY - Weinheim AN - OPUS4-29117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stößer, R. A1 - Feist, M. A1 - Willgeroth, Carola A1 - Emmerling, Franziska A1 - Menzel, Michael A1 - Reuther, H. T1 - The 'quiet Goldschmidt' - a mechanochemical, thermoanalytical, and spectroscopic study of selected steps of the aluminothermic reaction N2 - The Goldschmidt reaction (2Al+α-Fe2O3) was investigated both under mechanical and thermal activation by employing a combination of analytical methods such as ESR and Mössbauer spectroscopy, magnetic susceptibility, X-ray powder diffraction, and thermal analysis (TA). Both the mechanical treatment and the TA runs under air caused the reaction conditions of 'quiet redox reactions' due to a retarding effect and enabled a reaction study in a 'slow motion mode'. This allowed to establish distinct partial steps of the integral reaction process depending on the intensity of the mechanical impact, the educt composition, the gas phase composition, and, finally, the thermal excitation in the TA runs. Particular attention was payed to the role of the gas phase and to the reaction of aluminum with differently activated oxygen species. The phlegmatizing effect was traced back to the formation of Al2O3 coverages of the Al particles. KW - Thermite reaction KW - Iron ESR and Mössbauer spectroscopy KW - Mechanochemical activation KW - Magnetic moments KW - DTA-TG KW - XRD PY - 2013 U6 - https://doi.org/10.1016/j.jssc.2013.02.032 SN - 0022-4596 SN - 1095-726X VL - 202 SP - 173 EP - 190 PB - Elsevier CY - San Diego, Calif. AN - OPUS4-29528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Henning, C. A1 - Scheinost, A.C. A1 - Ikeda, A. T1 - Coordination of U(IV) sulfate in aqueous solution of high ionic strength and in solid state T2 - Jahrestagung der Deutschen Gesellschaft für Kristallographie CY - Erlangen, Germany DA - 2008-03-03 PY - 2008 AN - OPUS4-18726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Leiterer, Jork A1 - Tremel, W. A1 - Wolff, Stephan T1 - Contact-free Formation of Calcium Carbonate in a Levitated Drop: a WAXS / TEM study T2 - Jahrestagung der Deutschen Gesellschaft für Kristallographie CY - Erlangen, Germany DA - 2008-03-03 PY - 2008 AN - OPUS4-18729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bélombé, M.M. A1 - Nenwa, J. A1 - Emmerling, Franziska T1 - Crystal structure of quinolinium trans-diaquabis(oxalato-O,O')-chromate(III), [C9H8N] [Cr(H2O)2(C2O4)2] PY - 2009 U6 - https://doi.org/10.1524/ncrs.2009.0106 SN - 1433-7266 VL - 224 IS - 2 SP - 239 EP - 240 PB - Oldenbourg CY - München AN - OPUS4-19711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Merkel, Stefan A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - 3-{1-[(2,4-Dinitrophenyl)hydrazino]ethylidene}-5-(1-methylpropyl)pyrrolidine-2,4-dione KW - Tenuazonic acid 2,4-dinitrophenylhydrazone KW - X-ray single crystal diffraction KW - Crystal structure PY - 2009 U6 - https://doi.org/10.1107/S1600536809012458 SN - 1600-5368 VL - 65 IS - 5 SP - o988 EP - o989 PB - Munksgaard CY - Copenhagen AN - OPUS4-19736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bentrup, U. A1 - Radnik, J. A1 - Armbruster, U. A1 - Martin, A. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Brückner, A. T1 - Linking simultaneous in situ WAXS/SAXS/Raman with Raman/ATR/UV-vis spectroscopy: comprehensive insight into the synthesis of molybdate catalyst precursors N2 - A new setup is presented which enables simultaneous wide- and small-angle X-ray scattering (WAXS/SAXS) and Raman spectroscopic experiments during the synthesis of Mo-based mixed oxide catalyst precursors at the µ-spot beamline at the Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY). Furthermore, we report about the separate monitoring of the same reactions under comparable conditions by simultaneous combined ATR/UV–vis/Raman spectroscopic measurements. For testing the performance of both experimental setups two syntheses were described comprising the precipitation of metal molybdates by mixing solutions of metal nitrates and ammonium heptamolybdate. Additionally, the effect of H3PO4 admixture on precipitation was investigated. The combined evaluation of spectroscopic and WAXS/SAXS data allows the discrimination between different molybdate species appearing in solution and precipitate. Furthermore, these molybdate species could be assigned to separate phases of different crystallinity. KW - In situ KW - WAXS/SAXS KW - Raman KW - ATR KW - UV-vis KW - Mixed oxide catalyst KW - Synthesis PY - 2009 U6 - https://doi.org/10.1007/s11244-009-9309-y SN - 1022-5528 VL - 52 IS - 10 SP - 1350 EP - 1359 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-19794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bienert, Ralf A1 - Emmerling, Franziska A1 - Thünemann, Andreas T1 - The size distribution of 'gold standard' nanoparticles N2 - The spherical gold nanoparticle reference materials RM 8011, RM 8012, and RM 8013, with a nominal radius of 5, 15, and 30 nm, respectively, have been available since 2008 from NIST. These materials are recommended as standards for nanoparticle size measurements and for the study of the biological effects of nanoparticles, e.g., in pre-clinical biomedical research. We report on determination of the size distributions of these gold nanoparticles using different small-angle X-ray scattering (SAXS) instruments. Measurements with a classical Kratky type SAXS instrument are compared with a synchrotron SAXS technique. Samples were investigated in situ, positioned in capillaries and in levitated droplets. The number-weighted size distributions were determined applying model scattering functions based on (a) Gaussian, (b) log-normal, and (c) Schulz distributions. The mean radii are 4.36 ± 0.04 nm (RM 8011), 12.20 ± 0.03 nm (RM 8012), and 25.74 ± 0.27 nm (RM 8013). Low polydispersities, defined as relative width of the distributions, were detected with values of 0.067 ± 0.006 (RM 8011), 0.103 ± 0.003, (RM 8012), and 0.10 ± 0.01 (RM 8013). The results are in agreement with integral values determined from classical evaluation procedures, such as the radius of gyration (Guinier) and particle volume (Kratky). No indications of particle aggregation and particle interactions-repulsive or attractive-were found. We recommend SAXS as a standard method for a fast and precise determination of size distributions of nanoparticles. KW - Small-angle scattering KW - Reference materials KW - Metrology KW - Nanoparticles PY - 2009 U6 - https://doi.org/10.1007/s00216-009-3049-5 SN - 1618-2642 SN - 1618-2650 VL - 395 IS - 6 SP - 1651 EP - 1660 PB - Springer CY - Berlin AN - OPUS4-20473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merkel, Stefan A1 - Köppen, Robert A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Ergometrinine N2 - The absolute configuration of ergometrinine, C19H23N3O2 {systematic name: (6aR,9S)-N-[(S)-1-hydroxypropan-2-yl]-7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxamide}, was established based on epimerization reaction of ergometrine, which was followed by preparative HPLC. The non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar [maximum deviation = 0.271 (3) Å] and shows an envelope conformation, whereas ring D, involved in an intramolecular N-HN hydrogen bond, exibits a slightly distorted chair conformation. The structure displays undulating layers in the ac plane formed by O-H...O and N-H...O hydrogen bonds. KW - Ergometrinine KW - Ergometrine KW - Ergot alkaloids KW - Indole alkaloids KW - Crystal structure KW - Epimerization PY - 2010 U6 - https://doi.org/10.1107/S1600536810030825 SN - 1600-5368 VL - 66 IS - 9 SP - o2275, sup-1 - sup-9 PB - Munksgaard CY - Copenhagen AN - OPUS4-21806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Herder, Martin A1 - Erler, Robert A1 - Rolf, Simone A1 - Fischer, A. A1 - Würth, Christian A1 - Thünemann, Andreas A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Mechanistic insights into seeded growth processes of gold nanoparticles N2 - A facile approach for the synthesis of monodisperse gold nanoparticles with radii in the range of 7 to 20 nm is presented. Starting from monodisperse seeds with radii of 7 nm, produced in the first step, the addition of a defined amount of additional precursor material permits distinct size regulation and the realization of predicted nanoparticle sizes. These information were derived from ex- and in situ investigations by comprehensive small angle X-ray scattering (SAXS), X-ray absorption near edge structure (XANES) and UV-Vis data to obtain information on the physicochemical mechanisms. The obtained mechanisms can be transferred to other seeded growth processes. Compared to similar approaches, the presented synthesis route circumvents the use of different reducing or stabilizing agents. The size of resulting nanoparticles can be varied over a large size range presented for the first time without a measurable change in the shape, polydispersity or surface chemistry. Thus, the resulting nanoparticles are ideal candidates for size dependence investigations. KW - Gold nanoparticles KW - SAXS KW - XANES KW - Growth mechanism PY - 2010 U6 - https://doi.org/10.1039/c0nr00541j SN - 2040-3364 SN - 2040-3372 VL - 2 IS - 11 SP - 2463 EP - 2469 PB - RSC Publ. CY - Cambridge AN - OPUS4-22346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Blaske, Franziska A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Deacetyl tenuazonic acid p-toluenesulfonylhydrazone KW - Deacetyl tenuazonic acid KW - Toluenesulfonylhydrazine KW - Hydrazone KW - Crystal structure PY - 2009 U6 - https://doi.org/10.1107/S1600536809048958 SN - 1600-5368 VL - E65 IS - 12 SP - o3136 Sup-1 - o3136 Sup-8 PB - Munksgaard CY - Copenhagen AN - OPUS4-20608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aichmayer, B. A1 - Wiedemann-Bidlack, F. B. A1 - Gilow, C. A1 - Simmer, J.P. A1 - Yamakoshi, Y. A1 - Emmerling, Franziska A1 - Margolis, H.C. A1 - Fratzl, P. T1 - Amelogenin nanoparticles in suspension: Deviations from spherical shape and pH-dependent aggregation N2 - It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel. KW - Enamel KW - Recombinant amelogenin KW - rP172 KW - rM179 KW - Self-assembly KW - SAXS KW - DLS KW - Shape KW - Nanospheres KW - Oblates KW - pH dependency PY - 2010 U6 - https://doi.org/10.1021/bm900983b SN - 1525-7797 VL - 11 IS - 2 SP - 369 EP - 376 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-20939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Sokolov, S. A1 - Ahner, T. T. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nucleation and growth of gold nanoparticles studies via in situ small angle X-ray scattering at millisecond time resolution N2 - Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process (~2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes. KW - Nanoparticle formation mechanism KW - SAXS KW - Microstructured static mixer KW - Continuous flow PY - 2010 U6 - https://doi.org/10.1021/nn901499c SN - 1936-0851 VL - 4 IS - 2 SP - 1076 EP - 1082 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-20940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Emmerling, Franziska A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas T1 - Real-time monitoring of copolymer stabilized growing gold nanoparticles N2 - A great challenge in the production of nanoparticles with defined sizes and properties is to control their growth in situ. We developed a dedicated combined small-angle X-ray scattering (SAXS) and X-ray absorption spectroscopy (XAS) setup to monitor nanoparticle formation in solution. The capabilities of simultaneously deriving particle sizes and oxidation states of atoms/ions are illustrated for the formation of spherical gold nanoparticles by the reduction of hydrogen tetrachloroaureate (HAuCl4). Particles with initial radii of 4.60 ± 0.10 nm and final radii of 5.67 ± 0.10 nm were produced in a levitated droplet with a volume of 4 µL. An ethylene oxide/propylene oxide triblock copolymer PEO-PPO-PEO (Pluronic F-127) functions as reducing agent and colloidal stabilizer. XANES shows in situ how the gold was reduced in the droplet from Au(III) to Au(0), and simultaneously SAXS recorded the size distribution of the formed nanoparticles. It is shown that the final particle number is reached quickly. Thereafter, only the particles’ sizes increase. Comparison of XANES and SAXS shows that the quantity of Au(0) is higher than the quantity of gold located in the nanoparticles while the particles are growing. Finally, all the Au(0) is found in the nanoparticles. We tentatively attribute this finding to the pseudo crown ether effect of the polymer surfactant that kinetically stabilizes gold atoms when formed from gold ions within their protecting cavity. A simple “burst” mechanism for the gold nanoparticle formation is the consequence. The possibility of an inhomogeneous particles structure with an enhanced density near the particle surface is discussed. PY - 2010 U6 - https://doi.org/10.1021/la903829q SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 8 SP - 5889 EP - 5894 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In-situ Untersuchungen von Nukleations-, Kristallisations- und Wachstumsprozessen mit Synchrotronstrahlung T2 - ANAKON 2011 CY - Zurich, Switzerland DA - 2011-03-22 PY - 2011 AN - OPUS4-22564 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Klimakow, Maria A1 - Klobes, Peter T1 - Gas Adsorption and SAXS Studies of Mechanochemically Prepared MOFs T2 - XV. POROTEC-Workshop über die Charakterisierung von feinteiligen und porösen Festkörpern CY - Bad Soden, Germany DA - 2010-11-16 PY - 2010 AN - OPUS4-22834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Carvalho, José Joao A1 - Emmerling, Franziska A1 - Schneider, Rudolf ED - Preedy, V.R. T1 - The chemistry of caffeine KW - Koffein KW - Chemie KW - Kristallstrukturen KW - Geschichte PY - 2012 SN - 978-1-84973-367-0 U6 - https://doi.org/10.1039/9781849734752-00041 SN - 2045-1695 N1 - Serientitel: Food and nutritional components in focus – Series title: Food and nutritional components in focus VL - 2 IS - Chapter 3 SP - 41 EP - 52 PB - RSC Publ. AN - OPUS4-26531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Koch, Matthias T1 - (3S,7R)-7,14,16-trihydroxy-3-methyl-3,4,5,6,7,8,9,10,11,12-decahydro-1H-2-benzoxacyclotetradecin-1-one N2 - The asymmetric unit of the title compound, C18H26O5, which is known as α-zearalanol, contains two molecules having the same conformation, with a r.m.s. deviation of less than 0.03 Å for all non-H atoms. In each independent molecule, an intramolecular O—H···O hydrogen bond stabilizes the molecular conformation. In the crystal, O—H···O hydrogen bonds link the molecules, forming infinite chains along [110] and [1¯10]. KW - Alpha-zearalanol KW - Zearalenon KW - Estrogen KW - Growth promoter KW - Ralgro PY - 2012 U6 - https://doi.org/10.1107/S1600536812041141 SN - 1600-5368 VL - 68 IS - 11 SP - o3071, sup-1 - sup-11 PB - Munksgaard CY - Copenhagen AN - OPUS4-26771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Yin, Huajie A1 - Cerclier, C. A1 - Morineau, D. A1 - Wurm, Andreas A1 - Schick, C. A1 - Emmerling, Franziska A1 - Schönhals, Andreas T1 - Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy N2 - The molecular dynamics of the discotic liquid crystal pyrene-1,3,6,8-tetracarboxylic tetra(2-ethylhexyl)ester is studied by dielectric relaxation and specific heat spectroscopy. Dielectric spectroscopy shows 3 processes: a β-relaxation at low temperatures and an α-relaxation in the temperature range of the mesophases followed by conductivity. The dielectric α-relaxation is assigned to a restricted glassy dynamics in the plastic crystal as well as in the liquid crystalline phase. The obtained different Vogel–Fulcher–Tammann laws (different Vogel temperatures and fragility) are related to the different restrictions of the dipolar fluctuations in the corresponding phases. By means of specific heat spectroscopy glassy dynamics is also detected in the plastic crystalline phase but with quite a different temperature dependence of the relaxation times. This is discussed considering the different probes involved and how they are influenced by the structure. In the frame of the fluctuation approach a correlation length of glassy dynamics is calculated to 0.78 nm which corresponds to the core–core distance estimated by X-ray scattering. PY - 2012 U6 - https://doi.org/10.1039/c2sm25610j SN - 1744-683X VL - 8 IS - 43 SP - 11115 EP - 11122 PB - RSC Publ. CY - Cambridge AN - OPUS4-26826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, S. E. A1 - Lieberwirth, I. A1 - Natalio, F. A1 - Bardeau, J.-F. A1 - Delorme, N. A1 - Emmerling, Franziska A1 - Barrea, R. A1 - Kappl, M. A1 - Marin, F. T1 - Merging models of biomineralisation with concepts of nonclassical crystallisation: is a liquid amorphous precursor involved in the formation of the prismatic layer of the Mediterranean Fan Mussel Pinna nobilis? N2 - The calcitic prisms of Pinna nobilis (Pinnidae, Linnaeus 1758) are shown to be perfect examples of a mesocrystalline material. Based on their ultrastructure and on the occurrence of an amorphous transient precursor during the early stages of prism formation, we provide evidence for the pathway of mesocrystallisation proposed by Seto et al. (2012), which proceeds not by self-organized oriented attachment of crystalline nano-bricks but by aggregation of initially amorphous nanogranules which later transform by epitaxial nucleation to a three-dimensional array of well aligned nanocrystals. We further fathom the role of a liquid amorphous calcium carbonate in biomineralisation processes and provide strong evidence for the occurrence of PILP-like intermediates during prism formation. We develop a new scenario of prism formation based on the presented findings presented findings and discuss the implications of a speculative liquid amorphous calcium carbonate (LACC) intermediate in vivo. PY - 2012 U6 - https://doi.org/10.1039/c2fd20045g SN - 1359-6640 SN - 1364-5498 VL - 159 IS - 0 SP - 433 EP - 448 PB - Soc. CY - Cambridge [u.a.] AN - OPUS4-27122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandenburg, E. A1 - von Berlepsch, H. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Koksch, B. T1 - Formation of alpha-helical nanofibers by mixing beta-structured and alpha-helical coiled coil peptides N2 - The helical coiled coil is a well-studied folding motif that can be used for the design of nanometer-sized bioinspired fibrous structures with potential applications as functional materials. A two-component system of coiled coil based model peptides is investigated, which forms, under acidic conditions, uniform, hundreds of nanometers long, and ~2.6 nm thick trimeric α-helical fibers. In the absence of the other component and under the same solvent conditions, one model peptide forms β-sheet-rich amyloid fibrils and the other forms stable trimeric α-helical coiled coils, respectively. These observations reveal that the complementary interactions driving helical folding are much stronger here than those promoting the intermolecular β-sheet formation. The results of this study are important in the context of amyloid inhibition but also open up new avenues for the design of novel fibrous peptidic materials. PY - 2012 U6 - https://doi.org/10.1021/bm300882d SN - 1525-7797 VL - 13 IS - 11 SP - 3542 EP - 3551 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-27126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Bernsmeier, D. A1 - Strasser, P. A1 - Polte, J. A1 - Kraehnert, R. A1 - Vainio, U. T1 - A general strategy for the synthesis of micelle-templated mesoporous metal carbonates and metal oxides T2 - 25. Deutsches Zeolith-Tagung CY - Hamburg, Germany DA - 2013-03-06 PY - 2013 AN - OPUS4-27254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Orgzall, I. A1 - Dietzel, B. A1 - Schulz, B. A1 - Larrucea, J. T1 - Ordering the amorphous - Structures in PBD LED materials N2 - The class of 2,5 disubstituted-1,3,4-oxadiazoles containing a biphenyl unit on one side is intensively used as electron transport materials to enhance the performance of organic light emitting diodes (OLEDs). In contrast to the ongoing research on these materials insights in their structure-property relationships are still incomplete. To overcome the structural tentativeness and ambiguities the crystal structures of 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, that of the related compound 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole and of 2-(4-biphenylyl)-5-(2,6-dimethylphenyl)-1,3,4-oxadiazole are determined. A comparison with the results of GAUSSIAN03 calculations and similar compounds in the Cambridge Structural Database leads to a profound characterization. KW - OLED KW - PBD KW - Diphenyl-1,3,4-oxadiazole KW - Crystallization PY - 2012 U6 - https://doi.org/10.1016/j.molstruc.2012.04.040 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 1030 SP - 209 EP - 215 PB - Elsevier CY - Amsterdam AN - OPUS4-27264 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, C. A1 - Takao, S. A1 - Takao, K. A1 - Weiss, S. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Scheinost, A.C. T1 - Structure and stability range of a hexanuclear Th(IV)-glycine complex N2 - A hexanuclear Th(IV)–glycine complex was observed by Th L3-edge EXAFS measurements in an aqueous solution. Within the stability range of this complex the positively charged hexanuclear species [Th6(µ3-O)4(µ3-OH)4(H2O)6(Gly)6(HGly)6]6+ was preserved in a crystal with the composition [Th6(µ3-O)4(µ3-OH)4(H2O)6(Gly)6(HGly)6]·(NO3)3(ClO4)3(H2O)3. This complex appears as a result of a competing reaction between hydrolysis and ligation by glycine. At a pH value below the stability range of the hexanuclear complex, crystals with the composition [Th(H2O)3(HGly)3]·(ClO4)4H2O were obtained from the solution. Three water molecules in the thorium coordination sphere indicate that this complex occurs prior to the onset of Th(IV) hydrolysis. PY - 2012 U6 - https://doi.org/10.1039/c2dt31367g SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 41 SP - 12818 EP - 12823 PB - RSC CY - Cambridge AN - OPUS4-27265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merkel, Stefan A1 - Köppen, Robert A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Lysergol monohydrate N2 - In the title compound [systematic name: (7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3,2-fg]quinoline-9-yl)methanol monohydrate], C16H18N2O·H2O, the non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar, with a maximum deviation of 0.659 (3) Å, and shows an envelope conformation. In the crystal, hydrogen bonds between the lysergol and water molecules contribute to the formation of layers parallel to (10-2). PY - 2012 U6 - https://doi.org/10.1107/S1600536812002632 SN - 1600-5368 VL - 68 IS - 2 SP - o523, sup1 EP - sup8 PB - Munksgaard CY - Copenhagen AN - OPUS4-25401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merkel, Stefan A1 - Köppen, Robert A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Lumi-ergometrine - structural identification and occurrence in sclerotia N2 - The fungus Claviceps purpurea grows on grasses and cereal grains and produces six predominant ergot alkaloids. These toxic substances undergo different transformation reactions during storage and cereal processing. One of these reactions is the addition of water to a double bond in the ergoline skeleton. Since light is required for this process, the substances formed were named lumi-ergot alkaloids. From these, a new asymmetric carbon and consequently two epimers with different polarities are formed. For investigations of lumi-ergot alkaloids, ergometrine was used exemplarily as it represents one of the six ergot alkaloids predominantly formed by Claviceps purpurea. The main reaction product, the less polar compound of the two lumiergometrine epimers, was separated by HPLC and unambiguously identified as 10-(S)-lumi-ergometrine using X-ray structural analysis. A HPLC-MS/MS method was developed for the detection of this substance in sclerotia extracts. Using this method, the existence of both epimeric forms of lumiergometrine could be proved in the sclerotia. This is the first time that the existence of a lumi-transformation product of ergot alkaloids was proved in naturally grown samples. KW - Lumi-ergot alkaloids KW - Sclerotia KW - Claviceps purpurea KW - HPLC-MS/MS PY - 2012 U6 - https://doi.org/10.1007/s12550-011-0116-5 SN - 0178-7888 VL - 28 IS - 1 SP - 59 EP - 66 PB - Springer CY - Berlin; Heidelberg AN - OPUS4-25442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Koch, Matthias T1 - (3S)-14,16-Dihydroxy-3-methyl-3,4,5,6,9,10,11,12-octa-hydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione (zearalanone) monohydrate N2 - The absolute configuration of the title compound, C18H24O5·H2O, was not been determined by anomalous-dispersion effects, but has been assigned by reference to an unchanging chiral centre in the synthetic procedure. Intramolecular O—H···O hydrogen bonds stabilize the molecular conformation. In the crystal, O—H···O hydrogen bonds link the main molecules and the water molecules, forming an infinite three-dimensional network. KW - Zearalanone KW - Crystal structure PY - 2012 U6 - https://doi.org/10.1107/S1600536812018168 SN - 1600-5368 VL - 68 IS - 5 SP - o1577, sup1 EP - sup7 PB - Munksgaard CY - Copenhagen AN - OPUS4-25832 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Wang, D.-Y. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Heinrich, G. A1 - Schönhals, Andreas T1 - Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods N2 - Organically modified ZnAl Layered Double Hydroxides (ZnAl-LDH) was synthesized and melt blended with polyethylene to obtain nanocomposites. The resulting morphology was investigated by a combination of Differential Scanning Calorimetry (DSC), Small and Wide-angle X-ray scattering (SAXS and WAXS) and dielectric relaxation spectroscopy (DRS). The arrangement (intercalation) of polyethylene chains between LDH stacks was investigated employing SAXS. The homogeneity of the nanocomposites and average number of stack size (4–6 layers) were determined using scanning microfocus SAXS (BESSY II). DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 45% LDH where the crystallization of PE is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion sodium dodecylbenzene sulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polyethylene matrix which is otherwise dielectrically invisible (low dipole moment). KW - Dielectric spectroscopy KW - Polyethylene nanocomposites KW - Layered double hydroxides PY - 2012 U6 - https://doi.org/10.1016/j.polymer.2012.03.041 SN - 0032-3861 SN - 1873-2291 VL - 53 IS - 11 SP - 2245 EP - 2254 PB - Springer CY - Berlin AN - OPUS4-25810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 U6 - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Schadrack, Reinhard A1 - Michaelis, Matthias A1 - Emmerling, Franziska A1 - Reuther, H. A1 - Menzel, Michael T1 - Evidence of formation of the tridymite form of AlPO4 in some municipal sewage sludge ashes N2 - Evidence is provided that the tridymite component observed in the X-ray diffraction patterns of some sewage sludge ashes (SSAs) should not be interpreted as the tridymite modification of SiO2 but as the tridymite form of AlPO4. This proof is based on a combined X-ray Powder Diffraction (XRD), X-ray fluorescence (XRF) and Mossbauer spectroscopy investigation of two SSAs produced at two fluidized bed incineration facilities, located in different municipalities and operated differently. The structural and chemical characterization was carried out on the 'as received' SSA samples as well as on the residues of these two SSAs pretreated by leaching in citric acid. In addition, direct proof is presented that the tridymite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850 °C) typical for fluidized bed incinerators. KW - Aluminium phosphate KW - Ash KW - Fly ash KW - Incinerator ash KW - Sewage sludge ash KW - Tridymite form PY - 2013 U6 - https://doi.org/10.1017/S0885715613000869 SN - 0885-7156 VL - 28 IS - S2 SP - S425 EP - S435 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-29703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unterlass, M.M. A1 - Emmerling, Franziska A1 - Antonietti, M. A1 - Weber, J. T1 - From dense monomer salt crystals to CO2 selective microporous polyimides via solid-state polymerization N2 - Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2. PY - 2014 U6 - https://doi.org/10.1039/c3cc47674j SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 50 IS - 4 SP - 430 EP - 432 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-29813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bothe, Martin A1 - Emmerling, Franziska A1 - Pretsch, Thorsten T1 - Poly(ester urethane) with varying polyester chain length: Polymorphism and shape-memory behavior N2 - The swelling, viscoelastic, and mechanical behavior of phase-segregated poly(ester urethane) (PEU) block copolymers, composed of 4,4'-methylenediphenyl diisocyanate, 1,4-butanediol as a chain extender, and crystallizable poly(1,4-butylene adipate) (PBA) with molecular weights between 1330 and 4120 g mol-1, are investigated. Wide-angle X-ray scattering (WAXS) is employed to study the overall PEU crystallinity, which increases from 8.6 to 13.6% at higher PBA contents. The existence of two crystalline, polymorphic PBA phases, a thermodynamically stable α phase and a metastable β phase, is confirmed by further WAXS measurements. Calorimetric and thermomechanical investigations give evidence for controllable PBA polymorphic behavior. The crystallization conditions, like the cooling rate, affect the emerging polymorphic mixture, whereas the storage conditions either promote or inhibit the polymorphic (β to α) transition. The introduced concepts represent a new approach for gaining control over programmable thermo­responsiveness, which may be transferable to other shape-memory polymers with polymorphic switching segments. KW - Shape-memory polymers KW - Stimuli-sensitive polymers KW - Poly(ester urethane) KW - Polymorphism PY - 2013 U6 - https://doi.org/10.1002/macp.201300464 SN - 1022-1352 SN - 1521-3935 VL - 214 IS - 23 SP - 2683 EP - 2693 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wuithschick, M. A1 - Paul, B. A1 - Bienert, Ralf A1 - Sarfraz, A. A1 - Vainio, U. A1 - Sztucki, M. A1 - Kraehnert, R. A1 - Strasser, P. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Polte, J. T1 - Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding N2 - Metal nanoparticles have attracted much attention due to their unique properties. Size control provides an effective key to an accurate adjustment of colloidal properties. The common approach to size control is testing different sets of parameters via trial and error. The actual particle growth mechanisms, and in particular the influences of synthesis parameters on the growth process, remain a black box. As a result, precise size control is rarely achieved for most metal nanoparticles. This contribution presents an approach to size control that is based on mechanistic knowledge. It is exemplified for a common silver nanoparticle synthesis, namely, the reduction of AgClO4 with NaBH4. Conducting this approach allowed a well-directed modification of this synthesis that enables, for the first time, the size-controlled production of silver nanoparticles 4–8 nm in radius without addition of any stabilization agent. KW - Silver nanoparticles KW - Growth mechanism KW - SAXS KW - Size control KW - Sodium borohydride PY - 2013 U6 - https://doi.org/10.1021/cm401851g SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 23 SP - 4679 EP - 4689 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinnasamy, R. A1 - Ravi, J. A1 - Pradeep, V.V. A1 - Manoharan, D. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials N2 - Flexible organic crystals (elastic and plastic) are important materials for optical waveguides, tunable optoelectronic devices, and photonic integrated circuits. Here, we present highly elastic organic crystals of a Schiff base, 1-((E)-(2,5-dichlorophenylimino)methyl)naphthalen-2-ol (1), and an azine molecule, 2,4-dibromo-6-((E)-((E)-(2,6-dichlorobenzylidene)hydrazono)methyl)phenol (2). These microcrystals are highly flexible under external mechanical force, both in the macroscopic and the microscopic regimes. The mechanical flexibility of these crystals arises as a result of weak and dispersive C−H⋅⋅⋅Cl, Cl⋅⋅⋅Cl, Br⋅⋅⋅Br, and π⋅⋅⋅π stacking interactions. Singly and doubly-bent geometries were achieved from their straight shape by a micromechanical approach using the AFM cantilever tip. Crystals of molecules 1 and 2 display a bright-green and red fluorescence (FL), respectively, and selective reabsorption of a part of their FL band. Crystals 1 and 2 exhibit optical-path-dependent low loss emissions at the termini of crystal in their straight and even in extremely bent geometries. Interestingly, the excitation position-dependent optical modes appear in both linear and bent waveguides of crystals 1 and 2, confirming their light-trapping ability. KW - Crystal growth KW - Fluorescence KW - Mechanophotonics KW - Micromanipulation KW - Optical waveguides PY - 2022 U6 - https://doi.org/10.1002/chem.202200905 SN - 0947-6539 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-55018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549934 SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kochovski, Z. A1 - Feldmann, Ines A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Ni- and Co-Struvites: Revealing Crystallization Mechanisms and Crystal Engineering toward Applicational Use of Transition Metal Phosphates N2 - Industrial and agricultural waste streams (waste water, sludges, tailings, etc.) which contain high concentrations of NH4+, PO43–, and transition metals are environmentally harmful and toxic pollutants. At the same time, phosphorous and transition metals constitute highly valuable resources. Typically, separate pathways have been considered to extract hazardous transition metals or phosphate independently from each other. Investigations on the simultaneous removal of multiple components have been carried out only to a limited extent. Here, we report the synthesis routes for Ni- and Co-struvites (NH4MPO4·6H2O, M = Ni2+ and Co2+), which allow for P, ammonia, and metal co-precipitation. By evaluating different reaction parameters, the phase and stability of transition metal struvites as well as their crystal morphologies and sizes could be optimized. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P) ratios, whereas Co-struvite only forms at low M/P ratios. Detailed investigations of the precipitation process using ex situ and in situ techniques provided insights into the crystallization mechanisms/crystal engineering of these materials. M-struvites crystallize via intermediate colloidal amorphous nanophases, which subsequently aggregate and condense to final crystals after extended reaction times. However, the exact reaction kinetics of the formation of a final crystalline product varies significantly depending on the involved metal cation in the precipitation process: several seconds (Mg) to minutes (Ni) to hours (Co). The achieved level of control over the morphology and size makes precipitation of transition metal struvites a promising method for direct metal recovery and binding them in the form of valuable phosphate raw materials. Under this paradigm, the crystals can be potentially up-cycled as precursor powders for electrochemical or (electro)catalytic applications, which require transition metal phosphates. KW - Crystallization KW - Struvite KW - Nickel KW - Cobalt KW - Phosphorous recovery KW - Up-cycling KW - Aqueous synthesis PY - 2022 U6 - https://doi.org/10.1021/acs.cgd.2c00284 VL - 22 IS - 7 SP - 4305 EP - 4315 PB - ACS Publications CY - Washington D.C. AN - OPUS4-55286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wolf, Jako A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - SI Files for "Towards automation of the polyol process for the synthesis of silver nanoparticles" N2 - The graphml file: reaction_graph_AgNP.graphml is included. It contains topological information (Fig. 1 in the main text) about the reaction setup and metadata with reaction condtions. It used by the Python API used to control the Chemputer. SAXS reports. The complete report sheets generated by McSAS are included. They contain extended information characterising the size distributions and the fitting parameters. NP3_I: saxs_report_NP3_I.pdf NP3_II: saxs_report_NP3_II.pdf NP3_III: saxs_report_NP3_III.pdf NP3_IV: saxs_report_NP3_IV.pdf NP5_I: saxs_report_NP5_I.pdf NP5_II: saxs_report_NP5_II.pdf NP5_III: saxs_report_NP5_III.pdf KW - Automated synthesis KW - Silver KW - Nanoparticles PY - 2022 U6 - https://doi.org/10.5281/zenodo.5910614 PB - Zenodo CY - Geneva AN - OPUS4-55197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-549984 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Häusler, I. A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Emmerling, Franziska A1 - Reiss, P. A1 - Resch-Genger, Ute T1 - One-Pot Heat-Up Synthesis of ZnSe Magic-Sized Clusters Using Thiol Ligands N2 - The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature. KW - ZnSe KW - Magic-sized cluster KW - Dodecanethiol KW - Semiconductor nanocrystals KW - One-pot synthesis PY - 2022 U6 - https://doi.org/10.1021/acs.inorgchem.2c00041 VL - 61 IS - 19 SP - 7207 EP - 7211 PB - ACS Publications CY - Washington, DC (USA) AN - OPUS4-54880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564728 SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-56472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loges, A. A1 - Scholz, G. A1 - Amadeu de Sosa, Nader A1 - Jingjing, S. A1 - Emmerling, Franziska A1 - John, T. A1 - Paulus, B. A1 - Braun, T. T1 - Studies on the local structure of the F/OH site in topaz by magic angle spinning nuclear magnetic resonance and Raman spectroscopy N2 - he mutual influence of F and OH groups in neighboring sites in topaz (Al2SiO4(F,OH)2) was investigated using magic angle spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The splitting of 19F and 1H NMR signals, as well as the OH Raman band, provides evidence for hydrogen bond formation within the crystal structure. Depending on whether a given OH group has another OH group or fluoride as its neighbor, two different hydrogen bond constellations may form: either OH···O···HO or F···H···O. The proton accepting oxygen was determined to be part of the SiO4 tetrahedron using 29Si MAS NMR. Comparison of the MAS NMR data between an OH-bearing and an OH-free topaz sample confirms that the 19F signal at −130 ppm stems from F− ions that take part in H···F bonds with a distance of ∼ 2.4 Å, whereas the main signal at −135 ppm belongs to fluoride ions with no immediate OH group neighbors. The Raman OH sub-band at 3644 cm−1 stems from OH groups neighboring other OH groups, whereas the sub-band at 3650 cm−1 stems from OH groups with fluoride neighbors, which are affected by H···F bridging. The integrated intensities of these two sub-bands do not conform to the expected ratios based on probabilistic calculations from the total OH concentration. This can be explained by a difference in the polarizability of the OH bond between the different hydrogen bond constellations or partial order or unmixing of F and OH, or a combination of both. This has implications for the quantitative interpretation of Raman data on OH bonds in general and their potential use as a probe for structural (dis-)order. No indication of tetrahedrally coordinated Al was found with 27Al MAS NMR, suggesting that the investigated samples likely have nearly ideal Al/Si ratios, making them potentially useful as high-density electron microprobe reference materials for Al and Si, as well as for F. KW - Topas KW - NMR KW - XRD PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-561863 SN - 1617-4011 VL - 34 IS - 5 SP - 507 EP - 521 PB - Copernicus Publications CY - Göttingen AN - OPUS4-56186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Hoch, C. T1 - Laudatio Prof. Dr.-Ing. Caroline Röhr N2 - It is a laudatio on the ocations of Prof. Dr.-Ing. Caroline Röhrs 60th birthday. KW - Metal-oxides PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-561877 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 2 PB - John Wiley & Sons, Ltd AN - OPUS4-56187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547397 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P. P. A1 - Prencipe, M. A1 - Feiler, Torvid A1 - Emmerling, Franziska A1 - Bacchi, A. T1 - On the mechanism of cocrystal mechanochemical reaction via low melting eutectic: A time-resolved in situ monitoring investigation N2 - Mechanochemistry has become a sustainable and attractive cost-effective synthetic technique, largely used within the frame of crystal engineering. Cocrystals, namely, crystalline compounds made of different chemical entities within the same crystal structure, are typically synthesized in bulk via mechanochemistry; however, whereas the macroscopic aspects of grinding are becoming clear, the fundamental principles that underlie mechanochemical cocrystallization at the microscopic level remain poorly understood. Time-resolved in situ (TRIS) monitoring approaches have opened the door to exceptional detail regarding mechanochemical reactions. We here report a clear example of cocrystallization between two solid coformers that proceeds through the formation of a metastable low melting binary eutectic phase. The overall cocrystallization process has been monitored by time-resolved in situ (TRIS) synchrotron X-ray powder diffraction with a customized ball milling setup, currently available at μ Spot beamline at BESSY-II, Helmholtz-Zentrum Berlin. The binary system and the low melting eutectic phase were further characterized via DSC, HSM, and VT-XRPD. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552977 SN - 1528-7505 VL - 22 IS - 7 SP - 4260 EP - 4267 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, UEA A1 - Streli, C. A1 - Radtke, Martin T1 - Reconstruction for coded aperture full-field x-ray fluorescence imaging N2 - X-ray fluorescence imaging is a well-established tool in materials characterization. In this work, we present the adaption of coded aperture imaging to full-field X-ray fluorescence imaging at the synchrotron. Coded aperture imaging has its origins in astrophysics, and has several advantages: Coded apertures are relatively easy to fabricate, achromatic, allow a high photon throughput, and high angular acceptance. Coded aperture imaging is a two-step-process, consisting of the measurement process and a reconstruction step. Different programs have been written, for the raytracing/forward projection and the reconstruction. Experiments with coded aperture in combination with a Color X-ray Camera and an energy-dispersive area detector, have been conducted at the BAMline. Measured samples were successfully reconstructed, and gave a 9.1-fold increase in count rate compared to a polycapillary optic. KW - Synchrotron KW - BAMline KW - Coded Aperture PY - 2022 SN - 1097-0002 VL - 65 SP - 57 EP - 70 PB - Cambridge University Press CY - Cambridge AN - OPUS4-56350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Dey, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam T1 - Designing Dual Mechanical Response in Molecular Crystals through Cocrystallization N2 - Two isomorphous crystals are reported based on a naphthylvinylpyridine coformer. The crystals are mechanically flexible and exhibit photosalient response to UV irradiation. We therefore show how multiple mechanical phenomena can be simultaneously designed into a single material by cocrystallization. KW - Cocrystal KW - Mechanical response PY - 2022 U6 - https://doi.org/10.1021/acs.cgd.2c00913 SN - 1528-7483 VL - 22 SP - 6838 EP - 6843 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565276 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ravi, J. A1 - Feiler, Torvid A1 - Mondal, A. A1 - Michalchuk, Adam A1 - Reddy, C. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Chandrasekar, R. T1 - Plastically bendable organic crystals for monolithic and hybrid micro-optical circuits N2 - Fluorescent plastically bendable crystals are a promising alternative to silicon-based materials for fabricating photonic integrated circuits, owing to their optical attributes and mechanical compliance. Mechanically bendable plastic organic crystals are rare. Their formation requires anisotropic intermolecular interactions and slip planes in the crystal lattice. This work presents three fluorescent plastically bendable crystalline materials namely, 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-chlorophenol (SB1), 2-((E)-(6-methylpyridin-2-ylimino)methyl)-4-bromophenol (SB2), and 2-((E)-(6-Bromopyridin-2-ylimino)methyl)-4-bromophenol (SB3) molecules. The crystal plasticity in response to mechanical stress facilitates the fabrication of various monolithic and hybrid (with a tip-to-tip coupling) photonic circuits using mechanical micromanipulation with an atomic force microscope cantilever tip. These plastically bendable crystals act as active (self-guiding of fluorescence) and passive waveguides both in straight and extremely bent (U-, J-, and O-shaped) geometries. These microcircuits use active and passive waveguiding principles and reabsorbance and energy-transfer mechanisms for their operation, allowing input-selective and direction-specific signal transduction. KW - Flexible crystals KW - Flexible waveguide PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565302 SN - 2195-1071 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Garcia-Ruiz, J. M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - Verdugo-Escamilla, E. T1 - A comprehensive methodology for monitoring evaporitic mineral precipitation and hydrochemical evolution of saline lakes: The case of Lake Magadi soda brine (East African Rift Valley, Kenya) N2 - Lake Magadi, East African Rift Valley, is a hyperalkaline and saline soda lake highly enriched in Na+, K+, CO32–, Cl–, HCO3–, and SiO2 and depleted in Ca2+ and Mg2+, where thick evaporite deposits and siliceous sediments have been forming for 100 000 years. The hydrogeochemistry and the evaporite deposits of soda lakes are subjects of growing interest in paleoclimatology, astrobiology, and planetary sciences. In Lake Magadi, different hydrates of sodium carbonate/bicarbonate and other saline minerals precipitate. The precipitation sequence of these minerals is a key for understanding the hydrochemical evolution, the paleoenvironmental conditions of ancient evaporite deposits, and industrial crystallization. However, accurate determination of the precipitation sequence of these minerals was challenging due to the dependency of the different hydrates on temperature, water activity, pH and pCO2, which could induce phase transformation and secondary mineral precipitation during sample handling. Here, we report a comprehensive methodology applied for monitoring the evaporitic mineral precipitation and hydrochemical evolution of Lake Magadi. Evaporation and mineral precipitations were monitored by using in situ video microscopy and synchrotron X-ray diffraction of acoustically levitated droplets. The mineral patterns were characterized by ex situ Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. Experiments were coupled with thermodynamic models to understand the evaporation and precipitation-driven hydrochemical evolution of brines. Our results closely reproduced the mineral assemblages, patterns, and textural relations observed in the natural setting. Alkaline earth carbonates and fluorite were predicted to precipitate first followed by siliceous sediments. Among the salts, dendritic and acicular trona precipitate first via fractional crystallization─reminiscent of grasslike trona layers of Lake Magadi. Halite/villiaumite, thermonatrite, and sylvite precipitate sequentially after trona from residual brines depleted in HCO3–. The precipitation of these minerals between trona crystals resembles the precipitation process observed in the interstitial brines of the trona layers. Thermonatrite precipitation began after trona equilibrated with the residual brines due to the absence of excess CO2 input. We have shown that evaporation and mineral precipitation are the major drivers for the formation of hyperalkaline, saline, and SiO2-rich brines. The discrepancy between predicted and actual sulfate and phosphate ion concentrations implies the biological cycling of these ions. The combination of different in situ and ex situ methods and modeling is key to understanding the mineral phases, precipitation sequences, and textural relations of modern and ancient evaporite deposits. The synergy of these methods could be applicable in industrial crystallization and natural brines to reconstruct the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and extraterrestrial planets. KW - Crystallization KW - Precipitation KW - Crystals KW - Evaporation KW - Minerals PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546712 SN - 1528-7483 VL - 22 IS - 4 SP - 2307 EP - 2317 PB - ACS Publications CY - Washington, DC AN - OPUS4-54671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546803 VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546823 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546833 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546841 VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Martins, Ines T1 - Carbamazepine Dihydroxybenzoic Acid Cocrystals: Exploring Packing Interactions and Reaction Kinetics N2 - Herein, we present the mechanochemical formation of three new cocrystals containing the active pharmaceutical ingredient carbamazepine and dihydroxybenzoic acids as coformers (CBZ:2,4-DHBA 1:1, CBZ:2,5-DHBA 1:1, and CBZ:2,6-DHBA 1:1). Rietveld methods were used for three different purposes: (i) refining all structures solved using powder X-ray diffraction, (ii) performing a quantitative phase analysis of the diffraction data collected from ex situ mechanochemical reactions at different milling times, and (iii) determining the cocrystallization kinetic profiles. The rate of cocrystallization was found to be higher for the formation of CBZ:2,4-DHBA and CBZ:2,6-DHBA, reaching an equilibrium after 600 s of milling. In the case of CBZ:2,5-DHBA a short induction period of 20 s was detected prior to the start of the reaction and an equilibrium was reached after 1200 s. An empirical trend between the rate of cocrystallization and the structural complexity of the cocrystal product was found. The slowest cocrystallization rate observed for CBZ:2,5-DHBA corresponds to the crystal structure deviating substantially from the hydrogen-bonding motif found in the reactants. KW - Mechanochemistry KW - In situ real-time monitoring KW - Kinetics PY - 2021 U6 - https://doi.org/10.1021/acs.cgd.1c00902 VL - 21 IS - 12 SP - 6961 EP - 6970 PB - ACS Publications AN - OPUS4-54407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 U6 - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540094 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Time-Resolved InSitu Monitoring of Mechanochemical Reactions N2 - Mechanochemical transformations offer environmentally benign synthesis routes, whilst enhancing both the speed and selec-tivity of reactions. In this light, mechanochemistry promises to trans-form the way in which chemistry is done in both academia and indus-try but is greatly hindered by a current lack in mechanistic understand-ing. The continued development and use of time-resolved in situ(TRIS) approaches to monitor mechanochemical reactions provides a new dimension to elucidatethese fascinating transformations. We here discuss recent trends in method development that have pushed the boundaries of mechanochemical research. New features of mech-anochemical reactions obtained by TRIS techniques are subse-quently discussed, shedding light on how different TRISapproaches have beenused. Emphasis is placed on the strength of combining complementary techniques. Finally, we outline our views for the po-tential of TRIS methods in mechanochemical research, towards es-tablishing a new, environmentally benign paradigm in the chemical sciences KW - Mechanochemistry KW - Material synthesis KW - Green chemistry PY - 2022 U6 - https://doi.org/10.1002/anie.202117270 SN - 1433-7851 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, C. A1 - Feiler, Torvid A1 - Heilmann, Maria A1 - Braga, D. A1 - Emmerling, Franziska A1 - Grepioni, F. T1 - Too much water? Not enough? In situ monitoring of the mechanochemical reaction of copper salts with dicyandiamide N2 - n situ monitoring of mechanochemical reactions between dicyandiamide (DCD) and CuX2 salts (X = Cl−, NO3−), for the preparation of compounds of agrochemical interest, showed the appearance of a number of phases. It is demonstrated that milling conditions, such as the amount of water added in wet grinding and/or the milling frequency, may affect the course of the mechanochemical reactions, and drive the reaction towards the formation of different products. It has been possible to discover by in situ monitored experiments two novel crystalline forms, namely the neutral complexes [Cu(DCD)2(OH2)2(NO3)2] (2) and [Cu(DCD)2(OH2)Cl2]·H2O (4), in addition to the previously known molecular salt [Cu(DCD)2(OH2)2][NO3]2·2H2O (1, DIVWAG) and neutral complex [Cu(DCD)2(OH2)Cl2] (3, AQCYCU), for which no synthesis conditions were available. Compounds 2 and 4 were fully characterized via a combination of solid-state techniques, including X-ray diffraction, Raman spectroscopy and TGA. KW - Mechanochemistry KW - In situ PY - 2022 U6 - https://doi.org/10.1039/d1ce01670a VL - 24 IS - 6 SP - 1292 EP - 1298 PB - RSC AN - OPUS4-54344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543606 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Tothadi, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Different mechanical responses of dimorphic forms of Anthracene Schiffbase crystal N2 - We obtained concomitant dimorphic forms of Anthracene Schiffbase (N-(anthracen-9-yl methylene)-2,5- dichloroaniline) from hexane solvent. Two polymorphs can be differentiated by their morphology and mechanical properties. One form is long acicular type and elastically bendable while another form is block shaped and brittle in nature. Mechanical property is attributed to underlying crystal packing. Hirsh- feld analysis and energy framework calculations were done to corroborate structure-property correlation of two forms. KW - Elasticity KW - Mechanical properties KW - Anthracene schiff base KW - Dimorphs PY - 2021 U6 - https://doi.org/10.1016/j.molstruc.2021.132182 VL - 1252 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-54356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical processes N2 - Overview of the present BAM activities in the field of in situ analytics of mechanochemical processes. Recent results for the synthesis of metal organic frameworks and cocrystals are presented. T2 - HZB Seminar CY - Online meeting DA - 21.01.2022 KW - Mechanochemistry KW - In situ real-time monitoring PY - 2022 AN - OPUS4-54296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana T1 - X-Ray absorption spectroscopy to study multicomponent materials N2 - Detailed study of multicomponent systems in solid-state as well as in solution using X-ray diffraction and X-ray spectroscopy is one of the most common topics in modern materials chemistry. 5-6 component high-entropy alloys such as fcc- and bcc-structured AlxCoCrFeNi and fluorescent nanoparticles based on fluorite-structured SrF2 doped by rare-earth metals in organic solutions have high complexity and their local structure cannot be resolved using only diffraction. X-ray absorption spectroscopy should be applied to understand peculiarities in their local structure and make a link between structure on short and long ranges and their macroscopic properties. Here, based on two representativee examples, we discuss how a combination of several X-ray absorption edges might give new insights into complex materials. T2 - Virtual meeting of the African Light Source CY - Online meeting DA - 15.11.2021 KW - EXAFS KW - Synchrotron studies PY - 2021 AN - OPUS4-54014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, L. A1 - Broll, V. A1 - Ciurili, S. A1 - Braga, D. A1 - Emmerling, Franziska A1 - Gepioni, F. T1 - Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex N2 - Nitrapyrin (NP) is applied to cultivated soils to inhibit the enzymatic activity of ammonia monooxygenase (AMO), but its poor aqueous solubility and high volatility severely limit its application. β-Cyclodextrin (β-CD) is commonly used to form inclusion complexes with hydrophobic molecules, improving water solubility and stability upon complexation. Here we report on the mechanochemical synthesis of the inclusion complex β-CD·NP, characterized via a combination of solid-state techniques, including exsitu and in situ X-ray diffraction, Raman and NMR spectroscopies, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The pure inhibitor NP was also structurally characterized. The β-CD·NP complex presents improved solubility and thermal stability, and still inhibits the enzymatic activity of AMO with high efficacy. All results indicate that the inclusion of NP into β-CD represents a viable route for the preparation of a novel class of inhibitors, with improved properties related to stability, water solubility, and good inhibition activity. KW - Mechanochemistry KW - Nitrification PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537154 VL - 21 IS - 10 SP - 5792 EP - 5799 PB - ACS Publications AN - OPUS4-53715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.2-4 We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers.2,3,5 Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical syntheses. T2 - BCA/BACG joint spring meeting CY - Online meeting DA - 29.03.2021 KW - Mechanochemistry KW - Cocrystals KW - Crystal Engineering PY - 2021 AN - OPUS4-53995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: in situ investigations of mechanochemical processes N2 - Mechanochemistry has emerged as one of the most interesting synthetic protocols to produce new materials. The development of mechanochemistry as a synthetic method is supported by excellent research by many groups worldwide in a wide range of applications. The potential of mechanochemistry is also reflected in the inclusion in IUPAC’s 10 chemical innovations that will change our world’.[1] Solvent-free methodologies lead to unique chemical processes during synthesis with the consequent formation of martials with new properties.2 In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals, coordination polymers, metal oxides and metal nanoparticles.[3-8] We introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy and thermography. T2 - Deutsche Kristallzüchtertagung CY - Berlin, Germany DA - 06.10.2021 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2021 AN - OPUS4-53996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Scientific Writing - best practice tools N2 - Personal view of an experienced writer on how to write a paper. T2 - MatchingCamp 2021 CY - Bad Belzig, Germany DA - 08.11.2021 KW - Writing PY - 2021 AN - OPUS4-53999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lee, P.-W. A1 - Kaynak, T. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Schalley, C. T1 - Effect of Perfluorinated Side-Chain Length on the Morphology, Hydrophobicity, and Stability of Xerogel Coatings N2 - Superhydrophobic surfaces can be quickly formed with supramolecular materials. Incorporating low-molecular-weight gelators (LMWGs) with perfluorinated chains generates xerogel coatings with low surface energies and high roughness. Here, we examine and compare the properties of the xerogel coatings formed with eight different LMWGs. These LMWGs all have a trans-1,2-diamidocyclohexane core and two perfluorinated ponytails, whose lengths vary from three to ten carbon atoms (CF3 to CF10). Investigation of the xerogels aims to provide in-depth information on the chain length effect. LMWGs with a higher degree of fluorination (CF7 to CF10) form superhydrophobic xerogel coatings with very low surface energies. Scanning electron microscopy images of the coatings show that the aggregates of CF5 and CF7 are fibrous, while the others are crystal-like. Aggregates of CF10 are particularly small and further assemble into a porous structure on the micrometer scale. To test their stabilities, the xerogel coatings were flushed multiple times with a standardized water flush test. The removal of material from the surface in these flushes was monitored by a combination of the water contact angle, contact angle hysteresis, and coating thickness measurements. A new method based on image processing techniques was developed to reliably determine the change of the coating thickness. The CF7, CF9, and CF10 surfaces show consistent hydrophobicity and coating durability after repetitive flushing tests. The length of the perfluorinated side chains thus has a significant effect on the morphology of the deposited xerogel coatings, their roughness, and, in consequence, their hydrophobicity and mechanical durability. KW - Coating materials KW - Amorphous materials KW - Hydrophobicity KW - Materials Stability PY - 2021 U6 - https://doi.org/10.1021/acs.langmuir.1c02341 SN - 1520-5827 VL - 37 IS - 49 SP - 14390 EP - 14397 PB - ACS Publications AN - OPUS4-54071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal N2 - Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxylnaphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently. KW - Elastic Crystal PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539040 VL - 11 IS - 11 SP - 1397 PB - MDPI AN - OPUS4-53904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Supplementary data set for "Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals" N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. KW - Calcium sulfate KW - Mesocrystal KW - Anhydrite PY - 2021 U6 - https://doi.org/10.5281/zenodo.4943234 PB - Zenodo CY - Geneva AN - OPUS4-53765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Simões, R. G. A1 - Bernardes, C. E. S. A1 - Ramisch, Yen A1 - Bienert, Ralf A1 - Röllig, Matthias A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Real-Time In situ XRD Study of Simvastatin Crystallization in Levitated Droplets N2 - Simvastatin (SV) is an important active pharmaceutical ingredient (API) for treatment of hyperlipidemias, which is known to exist in different crystalline and amorphous phases. It is, therefore, an interesting model to investigate how the outcome of evaporative crystallization in the contactless environment of an acoustically levitated droplet may be influenced by key experimental conditions, such as temperature, solvent properties (e.g., polarity and hygroscopicity), and dynamics of the evaporation process. Here, we describe a real-time and in situ study of simvastatin evaporative crystallization from droplets of three solvents that differ in volatility, polarity, and protic character (acetone, ethanol, and ethyl acetate). The droplet monitorization relied on synchrotron X-ray diffraction (XRD), Raman spectroscopy, imaging, and thermographic analysis. A pronounced solvent-dependent behavior was observed. In ethanol, a simvastatin amorphous gel-like material was produced, which showed no tendency for crystallization over time; in ethyl acetate, a glassy material was formed, which crystallized on storage over a two-week period to yield simvastatin form I; and in acetone, form I crystallized upon solvent evaporation without any evident presence of a stable amorphous intermediate. The XRD and Raman results further suggested that the persistent amorphous phase obtained from ethanol and the amorphous precrystallization intermediate formed in ethyl acetate were similar. Thermographic analysis indicated that the evaporation process was accompanied by a considerable temperature decrease of the droplet surface, whose magnitude and rate correlated with the solvent volatility (acetone > ethyl acetate > ethanol). The combined thermographic and XRD results also suggested that, as the cooling effect increased, so did the amount of residual water (most likely captured from the atmosphere) remaining in the droplet after the organic solvent was lost. Finally, the interpretation of the water fingerprint in the XRD time profiles was aided by molecular dynamics simulations, which also provided insights into the possible role of H2O as an antisolvent that facilitates simvastatin crystallization. KW - Simvastatin KW - In-situ KW - API KW - Crystallization PY - 2021 U6 - https://doi.org/10.1021/acs.cgd.1c00509 SN - 1528-7483 VL - 21 IS - 8 SP - 4665 EP - 4673 PB - ACS Publications AN - OPUS4-53663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, X. A1 - Michalchuk, Adam A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Pulham, C. T1 - High-pressure reversibility in a plastically flexible coordination polymer crystal N2 - Single crystals which exhibit mechanical flexibility are promising materials for advanced technological applications. Before such materials can be used, a detailed understanding of the mechanisms of bending is needed. Using single crystal X-ray diffraction and microfocus Raman spectroscopy, we study in atomic detail the high-pressure response of the plastically flexible coordination polymer [Zn(μ-Cl)2(3,5-dichloropyridine)2]n (1). Contradictory to three-point bending, quasi-hydrostatic compression of (1) is completely reversible, even following compression to over 9 GPa. A structural phase transition is observed at ca. 5 GPa. DFT calculations show this transition to result from the pressure-induced softening of low-frequency vibrations. This phase transition is not observed during three-point-bending. Microfocus synchrotron X-ray diffraction revealed that bending yields significant mosaicity, as opposed to compression. Hence, our studies indicate of overall disparate mechanical responses of bulk flexibility and quasi-hydrostatic compression within the same crystal lattice. We suspect this to be a general feature of plastically bendable materials. KW - High pressure KW - Density functional theory KW - Mechanically flexible crystals PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-530360 VL - 12 IS - 1 SP - 3871 AN - OPUS4-53036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Mazzeo, P. A1 - Belenguer, Ana A1 - Sanders, J. K. M. A1 - Bacchi, A. A1 - Emmerling, Franziska T1 - Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing N2 - Time resolved in situ (TRIS) monitoring has revolutionised the study of mechanochemical transformations but has been limited by available data quality. Here we report how a combination of miniaturised grinding jars together with innovations in X-ray powder diffraction data collection and state-of-the-art analysis strategies transform the power of TRIS synchrotron mechanochemical experiments. Accurate phase compositions, comparable to those obtained by ex situ measurements, can be obtained with small sample loadings. Moreover, microstructural parameters (crystal size and microstrain) can be also determined with high confidence. This strategy applies to all chemistries, is readily implemented, and yields high-quality diffraction data even using a low energy synchrotron source. This offers a direct avenue towards the mechanochemical investigation of reactions comprising scarce, expensive, or toxic compounds. Our strategy is applied to model systems, including inorganic, metal-organic, and organic mechanosyntheses, resolves previously misinterpreted mechanisms in mechanochemical syntheses, and promises broad, new directions for mechanochemical research. KW - Mechanochemistry KW - Synchrotron radiation KW - Material synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535932 SN - 2041-1723 VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Publishing Group CY - London AN - OPUS4-53593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535326 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, I. A1 - Carta, M. A1 - Haferkamp, Sebastian A1 - Feiler, Torvid A1 - Delogu, F. A1 - Colacino, E. A1 - Emmerling, Franziska T1 - Mechanochemical N‑Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X‑ray Diffraction and Raman Spectroscopy N2 - Mechanochemistry has become a valuable tool for the synthesis of new molecules, especially in the field of organic chemistry. In the present work, we investigate the kinetic profile of the chlorination reaction of N-3-ethyl-5,5-dimethylhydantoin (EDMH) activated and driven by ball milling. The reaction has been carried out using 2 mm, 4 mm, 5 mm, 6 mm, and 8 mm ball sizes in a new small custom-made Perspex milling jar. The Crystal structure of the starting material EDMH and the 1-chloro-3-ethyl5,5′-dimethyl hydantoin (CEDMH) chlorination product was solved by single-crystal X-ray diffraction. The reaction was monitored, in situ and in real time, by both powder X-ray diffraction (PXRD) and Raman spectroscopy. Our kinetic data show that the reaction progress to equilibrium is similar at all milling ball sizes. The induction period is very short (between 10 and 40 s) when using 4 mm, 5 mm, 6 mm, and 8 mm balls. For the reaction performed with a 2 mm ball, a significantly longer induction period of 9 min was observed. This could indicate that an initial energy accumulation and higher mixing efficiency are necessary before the reaction starts. Using different kinetic models, we found that the amount of powder affected by critical loading conditions during individual impacts is significantly dependent on the ball size used. An almost linear correlation between the rate of the chemical transformations and the ball volume is observed. KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination KW - Kinetics KW - Hydantoin KW - Powder X-ray diffraction KW - Raman spectroscopy PY - 2021 U6 - https://doi.org/10.1021/acssuschemeng.1c03812 VL - 9 IS - 37 SP - 12591 EP - 12601 AN - OPUS4-53541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Souza, B. A1 - Chauque, S. A1 - de Oliveira, P. A1 - Emmerling, Franziska A1 - Torresi, R. T1 - Mechanochemical optimization of ZIF-8/Carbon/S8 composites for lithium-sulfur batteries positive electrodes N2 - The application of lithium-sulfur (Li-S) batteries is still limited by their rapid capacity fading. The pulverization of the sulfur positive electrode after the lithiation and the consequence dissolution of long chain polysulfides in organic solvents lead to the shuttle effect. To address these issues, here we report the mechanochemical preparation of ZIF-8 (Zeolitic Imidazole Framework-8)-based composites as sulfur hosts for positive electrodes in Li-S batteries. We studied different methods for the incorporation of conductive carbon. Also, the replacement of Zn2+ metal centers by other bivalent metals (Cu2+, Co2+ and Ni2+), enabled the preparation of other ZIF-8-based materials. The positive electrode ZIF-8/C/S8 showed initial discharges of 772 mA h g−1 while the pristine one, ZIF-8/S8, displayed 502 mA h g−1. The enhanced performance of 54% for ZIF-8/C/S8 indicates that the direct mechanochemical synthesis of ZIF-8 with conductive carbon is beneficial at initials charge/discharge process in comparison to traditional slurry preparation (ZIF-8/S8). Also, the Li2S6 absorption tests shows 87% of discoloration with ZIF-8/C/S8, confirming the better polysulfides absorption. KW - Lithium-sulfur battery KW - Metal organic frameworks KW - ZIF-8 KW - Mechanochemistry PY - 2021 U6 - https://doi.org/10.1016/j.jelechem.2021.115459 VL - 896 SP - 115459 PB - Elsevier B.V. AN - OPUS4-53542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Identification and Classification of Technical Lignins by means of Principle Component Analysis and k-Nearest Neighbor Algorithm N2 - The characterization of technical lignins is a key step for the efficient use and processing of this material into valuable chemicals and for quality control. In this study 31 lignin samples were prepared from different biomass sources (hardwood, softwood, straw, grass) and different pulping processes (sulfite, Kraft, organosolv). Each lignin was analysed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Statistical analysis of the ATR-FT-IR spectra by means of principal component analysis (PCA) showed significant differences between the lignins. Hence, the samples can be separated by PCA according to the original biomass. The differences observed in the ATR-FT-IR spectra result primarily from the relative ratios of the p-hydroxyphenyl, guaiacyl and syringyl units. Only limited influence of the pulping process is reflected by the spectral data. The spectra do not differ between samples processed by Kraft or organosolv processes. Lignosulfonates are clearly distinguishable by ATR-FT-IR from the other samples. For the classification a model was created using the k-nearest neighbor (k NN) algorithm. Different data pretreatment steps were compared for k=1…20. For validation purposes, a 5-fold cross-validation was chosen and the different quality criteria Accuracy (Acc), Error Rate (Err), Sensitivity (TPR) and specificity (TNR) were introduced. The optimized model for k=4 gives values for Acc = 98.9 %, Err = 1.1 %, TPR = 99.2 % and TNR = 99.6 %. KW - Classification KW - PCA KW - K-nearest neighbor KW - FT-IR KW - Technical lignin PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-533855 VL - 1 IS - 8 SP - 350 EP - 396 PB - Wiley-VCH GmbH AN - OPUS4-53385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, Gudrun A1 - Krahl, Thoralf A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Luminescent properties of Eu3+/Tb3+ doped fluorine containing coordination polymers N2 - Lanthanides doped coordination polymers (CPs) with different binding motifs were synthesized to investigate the influence of the different fluorine positions in the structure on the decay time τ of the excited states. Fluorine can be integrated into the network mechanochemically via a fluorinated organic linker, here barium tetrafluoroterephthalate Ba(p-BDC-F4)2 or directly via a metal-fluorine bond (barium terephthalate fluoride BaF(p-BDC)0.5). The CP with a metal-fluorine bond shows the highest lifetime of the excited states of lanthanides (Eu3+, Tb3+ or Eu3+& Tb3+). The excitation of the lanthanides can be performed directly via the excitation wavelength typical for lanthanides and via the excitation wavelength of the linker. This enabled the simultaneous excitation of Eu3+ and Tb3+ in one CP. In the emission spectra (λem = 393 nm) of the mixed doped CPs (Eu3+ and Tb3+) the bands of both lanthanides can be observed. The integration into the crystal lattice and the homogeneous distribution of the lanthanides in the CPs is shown by X-ray diffraction, TEM, STEM-EDS measurements and the long decay times. KW - Alkaline earth metal coordination polymers KW - Fluorine coordination polymers KW - Lanthanides doped coordination polymers KW - Luminescence PY - 2021 U6 - https://doi.org/10.1016/j.solidstatesciences.2021.106614 VL - 117 SP - 106614 PB - Elsevier Masson SAS AN - OPUS4-52559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schöder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystals by polymorphism for flexible optical waveguides N2 - The ability to selectively tune the optical and the mechanical properties of organic molecular crystals offers a promising approach towards developing flexible optical devices. These functional properties are sensitive to crystallographic packing features and are hence expected to vary with polymorphic modification. Using as a model system the photoluminescent material 4-bromo-6-[(6-chloropyridin-2-ylimino)methyl]phenol (CPMBP), we herein demonstrate the simultaneous tuning of mechanical flexibility and photoluminescence properties via polymorphism. Two new polymorphic forms of CPMBP were obtained from a solution and fully characterised using a combination of experiments and density functional theory simulations. These polymorphic forms exhibit remarkably distinct mechanical properties and an order of magnitude difference in photoluminescence quantum yield. The mechanically plastic form has a higher quantum yield than the brittle polymorphic form. However, their photoluminescence emission profile is largely unaffected by the observed polymorphism, thereby demonstrating that the optical properties and bulk mechanical properties can in principle be tuned independently. By distinguishing between active (involving absorption and emission) and passive (involving no absorption) light propagation, the waveguiding properties of the plastic form of CPMBP (form II) were explored using the straight and bent crystals to highlight the potential applications of CPMBP in designing flexible optical devices. Our results demonstrated that polymorph engineering would be a promising avenue to achieve concurrent modulation of the optical and mechanical properties of photoluminescent molecular crystals for next-generation flexible optical device applications. KW - Mechanochemistry KW - Flexible PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532075 VL - 23 IS - 34 SP - 5815 EP - 5825 PB - Royal Society of Chemistry CY - London AN - OPUS4-53207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, J. A1 - de Oliveira, P. F. M. A1 - Shetty, S. A1 - Oropeza, F. A1 - Peña O’Shea, V. A1 - Rodrigues, L. A1 - Rodrigues, M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Camargo, P. T1 - Bringing earth-abundant plasmonic catalysis to light: Gram-scale mechanochemical synthesis and tuning of activity by dual excitation of antenna and reactor sites N2 - The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles (NPs) in the visible and near-infrared ranges is currently at the forefront of improving photocatalytic performances via plasmonic photocatalysis. One bottleneck of this field is that the NPs that often display the best optical properties in the visible and near-infrared ranges are based on expensive noble metals such as silver (Ag) and gold (Au). While earth-abundant plasmonic materials have been proposed together with catalytic metals in antenna–reactor systems, their performances remain limited by their optical properties. Importantly, the synthesis of plasmonic photocatalysts remains challenging in terms of scalability while often requiring several steps, high temperatures, and special conditions. Herein, we address these challenges by developing a one-pot, gram-scale, room-temperature synthesis of earth-abundant plasmonic photocatalysts while improving their activities beyond what has been dictated by the LSPR excitation of the plasmonic component. We describe the mechanochemical synthesis of earth-abundant plasmonic photocatalysts by using MoO3 (antenna) and Au (reactor) NPs as a proof-of-concept example and demonstrate that the dual plasmonic excitation of antenna and reactor sites enables the tuning of plasmonic photocatalytic performances toward the reductive coupling of nitrobenzene to azobenzene as a model reaction. In addition to providing a pathway to the facile and gram-scale synthesis of plasmonic photocatalysts, the results reported herein may open pathways to improved activities in plasmonic catalysis. KW - MoO3 KW - Au nanoparticles KW - Localized surface plasmon resonance KW - Plasmonic photocatalysis KW - Nitrobenzene reduction PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532089 VL - 9 IS - 29 SP - 9750 EP - 9760 PB - American Chemical Society CY - Washington, DC AN - OPUS4-53208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Raysyan, A. A1 - Belenguer, A. M. A1 - Jaeger, Carsten A1 - Tchipilov, Teodor A1 - Prinz, Carsten A1 - Abad Andrade, Carlos Enrique A1 - Beyer, S. A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Tailored mobility in a zeolite imidazolate framework (ZIF) antibody conjugate N2 - Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies. KW - ZIF KW - ELISA PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532096 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 36 SP - 9414 EP - 9421 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Kinetics KW - In situ PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-558878 SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-55887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mazzeo, P A1 - Lampronti, G A1 - Michalchuk, Adam A1 - Belenguer, A A1 - Bacchi, A A1 - Emmerling, Franziska T1 - Accurate extrinsic and intrinsic peak broadening modelling for time-resolved in situ ball milling reactions via synchrotron powder X-ray diffraction N2 - The debate on the mechanisms which underpin mechanochemical reactions via ball mill grinding is still open. Our ability to accurately measure the microstructural (crystal size and microstrain) evolution of materials under milling conditions as well as their phase composition as a function of time is key to the in-depth understanding of the kinetics and driving forces of mechanochemical transformations. Furthermore, all ball milling reactions end with a steady state or milling equilibrium – represented by a specific phase composition and relative microstructure – that does not change as long as the milling conditions are maintained. The use of a standard sample is essential to determine the instrumental contribution to the X-ray powder diffraction (XRPD) peak broadening for time-resolved in situ (TRIS) monitoring of mechanochemical reactions under in operando conditions. Using TRIS-XRPD on a ball milling setup, coupled with low-energy synchrotron radiation, we investigated different data acquisition and analysis strategies on a silicon standard powder. The diffraction geometry and the microstructural evolution of the standard itself have been studied to model the instrumental contribution to XRPD peak broadening throughout the grinding activity. Previously proposed functions are here challenged and further developed. Importantly, we show that minor drifts of the jar position do not affect the instrumental resolution function significantly. We here report and discuss the results of such investigations and their application to TRIS-XRPD datasets of inorganic and organic ball mill grinding reactions. KW - Mechanochemistry KW - In situ diffraction KW - Synchrotron radiation KW - Sustainable chemisry PY - 2022 U6 - https://doi.org/10.1039/d2fd00104g SP - 1 EP - 17 PB - Royal Society of Chemistry AN - OPUS4-55932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Das, Chayanika A1 - Emmerling, Franziska T1 - Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks N2 - Water-stable metal−organic frameworks (MOFs) with proton-conducting behavior have attracted great attention as promising materials for proton-exchange membrane fuel cells. Herein, we report the mechanochemical gram-scale synthesis of three new mixed-ligand phosphonate-based MOFs, {Co(H2PhDPA)(4,4′-bipy)H2O)·2H2O}n (BAM-1), {Fe(H2PhDPA)(4,4′-bipy) (H2O)·2H2O}n (BAM-2), and {Cu(H2PhDPA)(dpe)2(H2O)2·2H2O}n (BAM-3) [where H2PhDPA = phenylene diphosphonate, 4,4′-bipy = 4,4′-bipyridine, and dpe = 1,2-di(4-pyridyl)ethylene]. Single-crystal X-ray diffraction measurements revealed that BAM-1 and BAM-2 are isostructural and possess a three-dimensional (3D) network structure comprising one-dimensional (1D) channels filled with guest water molecules. Instead, BAM-3 displays a 1D network structure extended into a 3D supramolecular structure through hydrogenbonding and π−π interactions. In all three structures, guest water molecules are interconnected with the uncoordinated acidic hydroxyl groups of the phosphonate moieties and coordinated water molecules by means of extended hydrogen-bonding interactions. BAM-1 and BAM-2 showed a gradual increase in proton conductivity with increasing temperature and reached 4.9 × 10−5 and 4.4 × 10−5 S cm−1 at 90 °C and 98% relative humidity (RH). The highest proton conductivity recorded for BAM-3 was 1.4 × 10−5 S cm−1 at 50 °C and 98% RH. Upon further heating, BAM-3 undergoes dehydration followed by a phase transition to another crystalline form which largely affects its performance. All compounds exhibited a proton hopping (Grotthuss model) mechanism, as suggested by their low activation energy. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Proton conductivity PY - 2022 U6 - https://doi.org/10.1021/acs.inorgchem.2c01023 VL - 61 SP - 10801 EP - 10809 PB - ACS Publications AN - OPUS4-55448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghazanfari, M. R. A1 - Vittadello, L. A1 - Al-Sabbagh, Dominik A1 - Santhosh, A. A1 - Frankcom, C. A1 - Fuß, F. A1 - von Randow, C. A. A1 - Siemensmeyer, K. A1 - Vrijmoed, J. C. A1 - Emmerling, Franziska A1 - Jerabek, P. A1 - Irmlau, M. A1 - Thiele, G. T1 - Remarkable Infrared Nonlinear Optical, Dielectric, and Strong Diamagnetic Characteristics of Semiconducting K3[BiS3] N2 - The ternary sulfido bismuthate K3[BiS3] is synthesized in quantitative yields. The material exhibits nonlinear optical properties with strong second harmonic generation properties at arbitrary wavelengths in the infrared spectral range and a notable laser-induced damage threshold of 5.22 GW cm−2 for pulsed laser radiation at a wavelength of 1040 nm, a pulse duration of 180 fs, and a repetition rate of 12.5 kHz. K3[BiS3] indicates semiconductivity with a direct optical band gap of 2.51 eV. Dielectric and impedance characterizations demonstrate κ values in the range of 6−13 at 1 kHz and a high electrical resistivity. A strong diamagnetic behavior with a susceptibility of −2.73 × 10−4 m3 kg−1 at room temperature is observed. These results suggest it is a promising nonlinear optical candidate for the infrared region. The synergic physical characteristics of K3[BiS3] provide insight into the correlation of optical, electrical, and magnetic properties. KW - Electrical properties KW - Insulators KW - Materials KW - Nonlinear optics KW - Quantum mechanics PY - 2022 U6 - https://doi.org/10.1021/acs.jpclett.2c01689 VL - 13 IS - 30 SP - 6987 EP - 6993 PB - ACS Publications AN - OPUS4-55456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Cocrystal polymorphs & Mechanochemistry - Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new crystal forms. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of mechanochemical reactivity and selectivity. Control over ball milling transformations is needed before the transformative potential of mechanochemical processing can be realized. Different analytical methods and their combinations have been developed for the time-resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of polymorphic cocrystals thereby elucidating the influence of milling parameters (solvent, temperature, time) and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigations of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 33th European Crrystallography Meeting CY - Versailles, France DA - 23.08.2022 KW - Mechanochemistry KW - Cocrystals KW - Kinetics KW - Polymorphs PY - 2022 AN - OPUS4-55586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lakshmipathi, M. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Structure-mechanical property correlation of a series of 4-(1-Napthylvinyl) pyridine based cocrystals N2 - We obtained three 4-(1-Napthylvinyl) pyridine based cocrystals ( 1–3 ) and studied its structure mechan- ical property correlation which aimed towards various applications for photo switches, mechanical ac- tuators etc. Selection of coformer molecules is important in fine tuning mechanical property outcome of synthesized cocrystals. Amongst three cocrystals, cocrystal 1 is mechanically flexible and its mechani- cal property is attributed to underlying crystal packing features which is in line with existing elastically bendable crystals while other two cocrystals ( 2, 3 ) are brittle in nature. Hirshfeld analysis was carried out to illustrate structure-property correlation particularly in terms of number as well as types of non- covalent interactions in the lattice and further to corroborate the space of the molecules in the lattice. KW - Cocrystals KW - Mechanical properties KW - Halogen bond interaction KW - Structure-mechanical property correlation PY - 2022 U6 - https://doi.org/10.1016/j.molstruc.2022.133670 SN - 0022-2860 VL - 1268 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-55547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Cocrystal polymorphs & Mechanochemistry - Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new crystal forms. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of mechanochemical reactivity and selectivity. Control over ball milling transformations is needed before the transformative potential of mechanochemical processing can be realized. Different analytical methods and their combinations have been developed for the time-resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of polymorphic cocrystals thereby elucidating the influence of milling parameters (solvent, temperature, time) and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigations of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 3rd CEFMC meeting CY - Kashmir, India DA - 31.08.2022 KW - Mechanochemistry KW - Crystal Engeneering PY - 2022 AN - OPUS4-55641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pütz, E. A1 - Smales, Glen Jacob A1 - Jegel, O. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Tuning ceria catalysts in aqueous media at the nanoscale: how do surface charge and surface defects determine peroxidase- and haloperoxidase-like reactivity N2 - Designing the shape and size of catalyst particles, and their interfacial charge, at the nanometer scale can radically change their performance. We demonstrate this with ceria nanoparticles. In aqueous media, nanoceria is a functional mimic of haloperoxidases, a group of enzymes that oxidize organic substrates, or of peroxidases that can degrade reactive oxygen species (ROS) such as H2O2 by oxidizing an organic substrate. We show that the chemical activity of CeO2−x nanoparticles in haloperoxidase- and peroxidaselike reactions scales with their active surface area, their surface charge, given by the ζ-potential, and their surface defects (via the Ce3+/Ce4+ ratio). Haloperoxidase-like reactions are controlled through the ζ-potential as they involve the adsorption of charged halide anions to the CeO2 surface, whereas peroxidase-like reactions without charged substrates are controlled through the specific surface area SBET. Mesoporous CeO2−x particles, with large surface areas, were prepared via template-free hydrothermal reactions and characterized by small-angle X-ray scattering. Surface area, ζ-potential and the Ce3+/Ce4+ ratio are controlled in a simple and predictable manner by the synthesis time of the hydrothermal reaction as demonstrated by X-ray photoelectron spectroscopy, sorption and ζ-potential measurements. The surface area increased with synthesis time, whilst the Ce3+/Ce4+ ratio scales inversely with decreasing ζ-potential. In this way the catalytic activity of mesoporous CeO2−x particles could be tailored selectively for haloperoxidase- and peroxidase-like reactions. The ease of tuning the surface properties of mesoporous CeO2x particles by varying the synthesis time makes the synthesis a powerful general tool for the preparation of nanocatalysts according to individual needs. KW - SAXS KW - Ceria KW - Zeta potential PY - 2022 U6 - https://doi.org/10.1039/D2NR03172H SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-55649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystal systems: Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (poly-morphic) cocrystals, metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 25th International Conference on the Chemistry of the Organic Solid State (ICCOSS XXV) CY - Ohrid, Macedonia DA - 03.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal Engineering PY - 2022 AN - OPUS4-55413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystals systems N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time-resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals, metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. Our results indicate that time-resolved in situ investigations of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 5ECQUL Forging Bonds CY - Lisbon, Portugal DA - 12.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination PY - 2022 AN - OPUS4-55414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. Time-resolved in situ investigations of milling reactions (Figure 1) provide direct insights into the underlying mechanisms. We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD and XAS combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key to future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers. Our results indicate that time-resolved in situ investigations of mechanochemical processes are key for tuning and optimizing mechanochemical syntheses allowing to unleash the potential of mechanochemistry for a green materials design. T2 - 2nd National Crystallographic Meeting Lisbon, Portugal CY - Lisbon, Portugal DA - 15.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2022 AN - OPUS4-55415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystal systems: Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography.1 Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals2–3 and metal-organic frameworks,4 thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved.6 Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 10th International conference on Mechanochemistry and Mechanical Alloying CY - Cagliari, Italy DA - 06.06.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Cocrystal PY - 2022 AN - OPUS4-55421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Witt, Julia A1 - Jain, Mohit A1 - Emmerling, Franziska T1 - In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis N2 - The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, have not been explored yet. For the first time, we report here in situ real-time monitoring of the mechanochemical formation mechanism of mixed-ligand MOFs. Our results show that binary phases can act as intermediates or competing products in one-pot and stepwise synthesis. KW - Mechanochemistry KW - Metal-organic-frameworks KW - In situ X-ray diffraction KW - Mixed-ligand MOFs PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-558167 SP - 1 EP - 4 PB - Royal Society of Chemistry AN - OPUS4-55816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pakrashy, S. A1 - Mandal, P. K. A1 - Goswami, J. N. A1 - Dey, S. K. A1 - Choudhury, S. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Alasmary, F. A. A1 - Dolai, M. T1 - Bioinformatics and Network Pharmacology of the First Crystal Structured Clerodin: Anticancer and Antioxidant Potential against Human Breast Carcinoma Cell N2 - Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells. KW - Anticancer KW - Clerodin PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567600 SN - 2470-1343 VL - 7 IS - 51 SP - 48572 EP - 48582 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid N2 - A new cocrystal of pyrazinamide with oxalic acid was prepared mechanochemically and characterized by PXRD, Raman spectroscopy, solid-state NMR spectroscopy, DTA-TG, and SEM. Based on powder X-ray diffraction data the structure was solved. The formation pathway of the reaction was studied in situ using combined synchrotron PXRD and Raman spectroscopy. Using oxalic acid dihydrate the initially neat grinding turned into a rapid self-accelerated liquid-assisted grinding process by the release of crystallization water. Under these conditions, the cocrystal was formed directly within two minutes. KW - in situ KW - cocrystal KW - mechanochemistry KW - pyrazinamide KW - hydrate PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-372357 SN - 1420-3049 VL - 21 IS - 7 SP - Article 917, 1 EP - 9 AN - OPUS4-37235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - Time- & spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot – new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Time resolution KW - Single-shot XAFS PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-370892 SN - 1600-5775 IS - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Chester, UK AN - OPUS4-37089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - Sulfamethoxazole KW - ELISA KW - LC-MS/MS PY - 2016 U6 - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-36676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska ED - de Oliveira Guilherme Buzanich, Ana ED - Strange, R. W. T1 - Time- and spatial-resolved XAFS spectroscopy in a single shot: new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ–2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 mm is achieved. KW - Single-shot XAFS KW - Time resolution PY - 2016 UR - http://scripts.iucr.org/cgi-bin/paper?S1600577516003969 U6 - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 VL - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Liverpool, UK AN - OPUS4-35903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Batzdorf, Lisa A1 - Fischer, Franziska A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Cadmium phenylphosphonates: preparation, characterisation and in situ investigation N2 - The successful mechanochemical syntheses of three cadmium phenylphosphonates indicates that mechanochemistry is ideally suited for synthesizing metal phosphonates. With this powerful synthesis tool it is possible to synthesize rapidly and efficiently both known and novel phosphonates. The Crystal structures of the two new compounds, and, were solved from PXRD data. They contain monodeprotonated phenylphosphonate and neutral phenylphosphonic acid ligands. The synthesis pathways of all three compounds were investigated in situ. A diffusion mechanism is corroborated by our findings. Intermediates could be detected and identified. The kinetically favored product (3) could always be detected during the syntheses. The thermodynamic stability of the compounds and the stoichiometric ratio of the starting materials are the two directing factors for the synthesis of the final products. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - MOF KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363322 SN - 2046-2069 VL - 6 IS - 42 SP - 36011 EP - 36019 PB - Royal Soc Chemistry CY - Cambridge, UK AN - OPUS4-36332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bach, S. A1 - Visnow, E. A1 - Panthöfer, M. A1 - Gorelik, T. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gulo, A. A1 - Kolb, U. A1 - Emmerling, Franziska A1 - Lind, C. A1 - Tremel, W. T1 - Hydrate networks under mechanical stress – A case study for Co3(PO4)2·8H2O N2 - The nature of the bound water in solids with hydrogen-bonded networks depends not only on temperature and pressure but also on the nature of the constituents. The collapse and reorientation of these network structures determines the stability of hydrated solids and transitions to other crystalline or amorphous phases. Here, we study the mechanochemically induced loss of bound water in Co₃(PO₄)₂·8H₂O and compare this process to the behavior under hydrostatic pressure. The associated phase transition and its kinetics were monitored by X-ray powder diffraction with Synchrotron radiation and quantitative IR spectroscopy. High shearing forces are responsible for the degradation of the hydrogen-bonded network and the concomitant crystalline–amorphous transformation. UV/Vis spectroscopy, extended X-ray absorption spectroscopy (EXAFS), and X-ray absorption near-edge spectroscopy (XANES) provided information about the short-range order in the amorphous solid, and thermal analysis revealed its composition and showed that the moderate charge densities of the Co²⁺ and PO₄³⁻ ions, which make the hydration enthalpy comparable to the binding energy of the counteranions, and the Formation of hydrogen-bonded networks favor multistage crystallization processes associated with the release and uptake of coordinated water. The changes of the Co²⁺ coordination induce a color change from pink to blue; therefore, Co₃(PO₄)₂·8H₂O can be used as an overheat temperature indicator. KW - Mechanochemistry KW - Amorphous materials KW - Hydrates KW - Cobalt KW - Phosphates PY - 2016 U6 - https://doi.org/10.1002/ejic.201501481 SN - 1434-1948 SN - 1099-0682 VL - 2016 IS - 13-14 SP - 2072 EP - 2081 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Germany AN - OPUS4-36434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates N2 - We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(II)(HO₃PPh)₂(H₂O₃PPh)₂(H₂O)₂] (M = Mn (1), Co (2), Ni (3); Ph = C₆H₅) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - XRD PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-363944 SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 45 IS - 23 SP - 9460 EP - 9467 AN - OPUS4-36394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobisch, T. A1 - Emmerling, Franziska A1 - Girod, Matthias A1 - Menzel, Michael A1 - Lerche, D. T1 - Advantages of dual wavelength detection for size determination of nanoparticles with analytical centrifugation KW - Particle size distributions KW - Dual wavelength detection KW - Analytical centrifugation KW - Nanoparticle separation PY - 2013 SN - 978-3-944261-28-7 SN - 978-3-944261-36-2 SN - 978-3-944261-52-2 VL - 4 SP - 9 EP - 11 AN - OPUS4-30802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses N2 - The synthesis of the polymorphic cocrystal caffeine:anthranilic acid was investigated to obtain a better understanding of the processes leading to the formation of different polymorphic forms. In the case of these cocrystal polymorphs synthesized by liquid-assisted grinding a distinct influence of the dipole moment of the solvent was found. A pre-coordination between the solvent molecules and the caffeine:anthranilic acid cocrystal could be identified in the formation of form II. In the case of form II the solvent can be regarded as a catalyst. The formation pathway of each polymorph was evaluated using synchrotron X-ray diffraction. KW - cocrystal KW - synchrotron X-ray diffraction KW - caffeine PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-313222 SN - 1466-8033 VL - 16 IS - 35 SP - 8272 EP - 8278 CY - London, UK AN - OPUS4-31322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Zorn, R. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana A1 - Frick, B. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Vibrational density of states of triphenylene based discotic liquid crystals: dependence on the length of the alkyl chain N2 - The vibrational density of states of a series of homologous triphenylene-based discotic liquid crystals HATn (n = 5, 6, 8, 10, 12) depending on the length of the aliphatic side chain is investigated by means of inelastic neutron scattering. All studied materials have a plastic crystalline phase at low temperatures, followed by a hexagonally ordered liquid crystalline phase at higher temperatures and a quasi isotropic phase at the highest temperatures. The X-ray scattering pattern for the plastic crystalline phase of all materials shows a sharp Bragg reflection corresponding to the intercolumnar distance in the lower q-range and a peak at circa 17 nm-1 related to intracolumnar distances between the cores perpendicular to the columns as well as a broad amorphous halo related to the disordered structure of the methylene groups in the side chains in the higher q-range. The intercolumnar distance increases linearly with increasing chain length for the hexagonal columnar ordered liquid crystalline phase. A similar behaviour is assumed for the plastic crystalline phase. Besides n = 8 all materials under study exhibit a Boson peak. With increasing chain length, the frequency of the Boson peak decreases and its intensity increases. This can be explained by a self-organized confinement model. The peaks for n = 10, 12 are much narrower than for n = 5, 6 which might imply the transformation from a rigid system to a softer one with increasing chain length. Moreover the results can also be discussed in the framework of a transition from an uncorrelated to a correlated disorder with increasing n where n = 8 might be speculatively considered as a transitional state. KW - X-ray scattering KW - Neutron scattering KW - Differential scanning calorimetry PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-304789 SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 16 SP - 7324 EP - 7333 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Schlegel, Moritz-Caspar A1 - Irassar, E.F. A1 - Meng, Birgit A1 - Emmerling, Franziska T1 - Applying high resolution SyXRD analysis on sulfate attacked concrete field samples N2 - High resolution synchrotron X-ray diffraction (SyXRD) was applied for a microstructural profile analysis of concrete deterioration after sulfate attack. The cement matrices consist of ordinary Portland cement and different amounts of supplementary cementitious materials, such as fly ash, natural pozzolana and granulated blast furnace slag. The changes of the phase composition were determined along the direction of sulfate ingress. This approach allows the identification of reaction fronts and zones of different phase compositions and conclusions about the mechanisms of sulfate attack. Two reaction fronts were localized in the initial 4 mm from the sample surface. The mechanism of deterioration caused by the exposition in the sulfate-bearing soil is discussed. SyXRD is shown to be a reliable method for investigation of cementitious materials with aggregates embedded in natural environments. KW - X-ray diffraction (B) KW - High resolution KW - Degradation (C) KW - Sulfate attack (C) KW - Concrete (E) PY - 2014 U6 - https://doi.org/10.1016/j.cemconres.2014.07.015 SN - 0008-8846 SN - 1873-3948 VL - 66 SP - 19 EP - 26 PB - Pergamon Press CY - New York, NY AN - OPUS4-31253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gärtner, Stefanie A1 - Carvalho, J.J. A1 - Emmerling, Franziska A1 - Garbe, L.-A. A1 - Schneider, Rudolf T1 - Polyclonal murine and rabbit antibodies for the bile acid isolithocholic acid N2 - Bile acids are relevant markers for clinical research. This study reports the production of antibodies for isolithocholic acid, the isomer of the extensively studied lithocholic acid. The IgG titer and affinity maturation were monitored during the immunizations of three mice and two rabbits. In both animal models, polyclonal antibodies with a high selectivity and affinity were produced. The development of a direct competitive ELISA with a test midpoint of 0.69 ± 0.05 µg/L and a measurement range from 0.09–15 µg/L is reported. Additionally, the crystal structure of isolithocholic acid is described for the first time. KW - ELISA KW - Crystal structure KW - Competitive assay KW - Immunization monitoring KW - 3ß-hydroxy-5ß-cholanic acid PY - 2015 U6 - https://doi.org/10.1080/15321819.2014.924419 SN - 1532-1819 SN - 1532-4230 VL - 36 IS - 3 SP - 233 EP - 252 PB - Taylor & Francis CY - Philadelphia, Pa. AN - OPUS4-31836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balski, Matthias A1 - Emmerling, Franziska A1 - Kipphardt, Heinrich A1 - Panne, Ulrich T1 - Determination of boron in silicon without use of additional complexing agents N2 - Methods for the determination of boron in various matrices described in the literature usually employ complexing agents like mannitol to retain the volatile boron species during matrix evaporation steps. However, also relatively high boron recoveries from silicon containing samples have been reported when no complexing agents were added to the digestion acids. The mechanism behind this matrix-dependant recovery has been investigated by studying the boron recovery in the analysis of solar grade silicon. It was found that the NH4+ ion formed by the reduction of nitric acid during sample digestion is responsible for the higher recovery of boron, which leads to a possible analysis method without the use of complexing agents if the sample preparation procedure is carefully optimized. KW - Boron KW - Complexing agents KW - Matrix evaporation KW - Sample enrichment PY - 2014 U6 - https://doi.org/10.1039/c4ay00410h SN - 1759-9660 SN - 1759-9679 VL - 6 IS - 12 SP - 4003 EP - 4008 PB - RSC Publ. CY - Cambridge AN - OPUS4-30956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Nguyen, Thi Yen A1 - Rump, Doreen A1 - Emmerling, Franziska T1 - Crystallization behavior of carbamazepine N2 - Carbamazepine (CBZ) is known for its variety of anhydrous and hydrous polymorphs. Herein, a thorough analysis of the crystallization behavior of CBZ is presented. The influence of the solvent and the concentration on the crystallization behavior under different environmental conditions is investigated by combined in situ XRD and Raman spectroscopy measurements. Crystallization studies conducted via conventional crystallization in glass tubes and in levitated droplets using an acoustic levitator indicate a dependence of the crystallization process from solvent and surface. KW - Carbamazepine KW - Polymorphism KW - Acoustic levitation KW - XRD KW - Raman spectroscopy PY - 2014 U6 - https://doi.org/10.1515/zpch-2013-0452 SN - 0942-9352 SN - 2196-7156 SN - 0044-3336 SN - 0044-3328 SN - 0942-9352 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. VL - 228 IS - 4-5 SP - 493 EP - 501 PB - Oldenbourg CY - München AN - OPUS4-30627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Zimathies, Annett A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of [Zn3(C2O4)3(4,4'-bipy)4] and its reorganization at high temperatures N2 - The metal organic layered structure catena-(bis(µ2-4,4'-bipyridine)-tris(µ2-oxalato)-bis(4,4'-bipyridine)-tri-zinc(ii)) ([Zn3(C2O4)3(4,4'-bipy)4]) was synthesized mechanochemically applying three different routes. The synthesis succeeded by i) simultaneously neat grinding the three starting materials zinc acetate dihydrate, oxalic acid dihydrate and 4,4'bipyridine, ii) grinding two compounds and adding the third afterwards, independent of the sequence. The products were characterized using powder X-ray diffraction, Raman spectroscopy, gas adsorption measurements, and scanning electron microscopy. Temperature-dependent synchrotron XRD measurements revealed that the monoclinic structure of [Zn3(C2O4)3(4,4'-bipy)4] rearranges reversibly to a higher ordered orthorhombic structure [Zn(C2O4)(4,4'-bipy)] at high temperatures. KW - Mechanochemistry KW - Metal organic compounds KW - Synchrotron radiation KW - Reorganization PY - 2014 U6 - https://doi.org/10.1515/zpch-2014-0445 SN - 0942-9352 SN - 2196-7156 SN - 0044-3336 SN - 0044-3328 SN - 0942-9352 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. VL - 228 IS - 4-5 SP - 575 EP - 585 PB - Oldenbourg CY - München AN - OPUS4-30628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Szczerba, Wojciech A1 - Reinholz, Uwe A1 - Emmerling, Franziska T1 - Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks N2 - Two metal organic structures composed of the ligands benzene-1,4-dicarboxylate and pyridine- 2,5-dicarboxylate and bismuth cations are presented: (H2Im)[Bi(1,4-bdc)2] (1) and [Bi(pydc)(NO3)2(H2O)2]*H2O (2) (bdc = benzenedicarboxylate, H2Im = imidazole cation, pydc = pyridinedicarboxylate). Both compounds were synthesised via grinding and the crystal structure of compound (2) was solved based on its powder diffraction pattern. Compound 1 crystallises isostructurally to the dimethyl ammonium containing compound (dma)[(Bi(1,4- bdc)2]. Raman spectroscopy and Extended X-ray absorption fine structure (EXAFS) measurements provided additional information about the two mechanochemically synthesised metal organic compounds. KW - crystal structure KW - mechanochemically synthesis KW - powder diffraction measurements PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306296 UR - http://pubs.rsc.org/en/content/articlepdf/2014/ce/c3ce42633e SN - 1466-8033 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. VL - 16 IS - 25 SP - 5560 EP - 5565 CY - London, UK AN - OPUS4-30629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Emmerling, Franziska T1 - Mechanochemical synthesis and characterisation of cocrystals and metal-organic compounds N2 - The mechanochemical synthesis of two model compounds, a metal organic framework ([Bi(1,4-bdc)2]*(Im) (bdc = benzene dicarboxylate, Im = imidazole cation)) and a cocrystal (Carbamazepine:Indometacin 1:1) were followed ex situ by combined analytical methods. Powder X-ray diffraction (XRD) and Raman spectroscopy data were evaluated for the synthesis of the metal organic framework. XRD measurements and REM images were analysed for the synthesis of the cocrystal. The measurements revealed that both model compounds were synthesised within minutes. The metal organic framework [Bi(1,4-bdc)2]*(Im) is synthesised via an intermediate structure. The cocrystal Carbamazepine:Indometacin 1:1 is formed within few seconds and afterwards the crystallite size decreases extremely. KW - Powder X-ray diffraction (XRD) KW - Raman spectroscopy KW - mechanochemical synthesis PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306305 UR - http://pubs.rsc.org/en/content/articlepdf/2014/fd/c3fd00163f SN - 1359-6640 SN - 1364-5498 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. SP - 109 EP - 119 PB - RSC CY - Cambridge [u.a.] AN - OPUS4-30630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klobes, Peter A1 - Klimakow, Maria A1 - Emmerling, Franziska T1 - Gas adsorption and SAXS studies of mechanochemically prepared Cu3 (BTC)2 T2 - CPM-5 - 5th - International Workshop "Characterization of Porous Materials: from Angstroms to Millimeters", New Brunswick, NJ, USA CY - New Brunswick, NJ, USA DA - 2009-06-24 PY - 2009 AN - OPUS4-18713 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Hennig, C. A1 - Kraus, Werner A1 - Ikeda, A. A1 - Scheinost, A.C. T1 - Coordination of the limiting U (IV) carbonate species in aqueous solution - a comparative EXAFS and XRD investigation T2 - DGK Tagung (Deutsche Gesellschaft für Kristallographie) CY - Hanover, Germany DA - 2009-03-09 PY - 2009 AN - OPUS4-18718 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juran, S. A1 - Walther, M. A1 - Stephan, H. A1 - Bergmann, R. A1 - Steinbach, J. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Comba, P. T1 - Hexadentate Bispidine derivatives as versatile bifunctional chelate agents for Copper(II) radioisotopes PY - 2009 U6 - https://doi.org/10.1021/bc800461e SN - 1043-1802 SN - 1520-4812 VL - 20 IS - 2 SP - 347 EP - 359 CY - Washington, DC AN - OPUS4-19068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterlik, J. A1 - Fecher, G.H. A1 - Jenkins, C.A. A1 - Medvedev, S. A1 - Felser, C. A1 - Kübler, J. A1 - Mühle, C. A1 - Doll, K. A1 - Jansen, M. A1 - Palasyuk, T. A1 - Trojan, I. A1 - Eremets, M.I. A1 - Emmerling, Franziska T1 - Exotic magnetism in the alkali sesquioxides Rb4O6 and Cs4O6 KW - Caesium compounds KW - Crystal structure KW - Density functional theory KW - Electronic structure KW - Ferromagnetic materials KW - Frustration KW - Magnetic transitions KW - Magnetisation KW - Raman spectra KW - Rubidium compounds KW - Spin glasses KW - X-ray diffraction PY - 2009 U6 - https://doi.org/10.1103/PhysRevB.79.214410 SN - 1098-0121 SN - 0163-1829 SN - 0556-2805 SN - 1095-3795 SN - 1550-235X VL - 79 IS - 21 SP - 214410-1 - 214410-6 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-19796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - radnik, J. A1 - Bentrup, U. A1 - Brückner, A. T1 - Flying droplets as model system for spray drying - An in situ synchrotron X-ray scattering study on complex oxides catalyst precursors N2 - As a model for spray drying the early stages of crystallization of complex molybdate catalyst precursors were monitored online in droplets levitated acoustically. Synchron X-ray scattering techniques were applied to study the drying process of a typical molybdate catalysts precursor prepared from Ni-,Fe-,Bi-nitrate, ammonium heptamolybdate and H3PO4. Comparison with diffraction patterns obtained from sessile droplets shows significant differences in the crystal growth, whereas the final crystal structure – including a Keggin-type anion – is identical in both cases. The levitated samples exhibit a decelerated growth with a large number of small crystallites at the beginning of the crystallization, whereas in case of the sessile droplets a small number of large crystallites were observed after a few minutes. The acoustic levitation using an ultrasonic trap proves to be an elegant tool to mimic spray drying and offers new possibilities in relation to the understanding of the drying process. KW - Acoustic levitation KW - Spray drying KW - Molybdate catalysts KW - X-ray scattering PY - 2010 U6 - https://doi.org/10.1016/j.cattod.2009.11.001 SN - 0920-5861 VL - 155 IS - 3-4 SP - 326 EP - 330 PB - Elsevier CY - Amsterdam AN - OPUS4-21998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas N2 - The strategy of utilizing mechanochemical synthesis to obtain metal–organic frameworks (MOFs) with high surface areas is demonstrated for two model systems. The compounds HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate) and MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) were synthesized by ball milling and characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and thermal analysis (DTA/DTG/MS). The specific surface area (SSA) of both compounds was characterized by nitrogen adsorption. To verify these results and to understand how the synthetic conditions influence the pore structure and the surface area, additional small-angle X-ray scattering (SAXS) experiments were carried out. Our investigations confirm that this synthesis approach is a promising alternative method for distinct MOFs. This facile method leads to materials with surface areas of 1713 m²/g, which is comparable to the highest given values in the literature for the respective compounds. KW - Metal-organic frameworks KW - Mechanochemistry KW - Green-chemistry synthesis KW - Gas adsorption KW - SAXS KW - Specific surface area PY - 2010 U6 - https://doi.org/10.1021/cm1012119 SN - 0897-4756 SN - 1520-5002 VL - 22 IS - 18 SP - 5216 EP - 5221 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Deacetyl tenuazonic acid KW - Deacetyl tenuazonic acid KW - X-ray single crystal diffraction KW - Crystal structure PY - 2009 U6 - https://doi.org/10.1107/S1600536809015372 SN - 1600-5368 VL - 65 IS - 6 SP - o1201 PB - Munksgaard CY - Copenhagen AN - OPUS4-19429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Polte, Jörg A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Kraehnert, R. T1 - In situ structure analysis using acoustic levitated droplets T2 - In-situ Studies with Photons, Neutrons and Electrons Scattering 1st International Workshop CY - Berlin, Germany DA - 2009-09-01 PY - 2009 AN - OPUS4-20150 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walter, Astrid A1 - Pfeifer, Dietmar A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Schneider, Rudolf A1 - Panne, Ulrich A1 - Weller, Michael G. T1 - Triacetone Triperoxide (TATP): Hapten design and development of antibodies N2 - Triacetone triperoxide (TATP), an improvised explosive, is a potential security threat because of its cost-efficient synthesis and the difficulty in detecting it. A highly selective antibody could provide the necessary specificity to the detection process. To obtain antibodies, a hapten made from acetone, hydrogen peroxide, and 7-oxooctanoic acid has been designed, synthesized, and confirmed by NMR that displays the utmost similarity to the analyte. The single-crystal X-ray structures of the solvated species TATP·methanol (1:1) and the TATP derivate were determined. In both compounds, the molecules exhibit D3 symmetry and adopt a twisted boat-chair conformation. The hapten was coupled to bovine serum albumin, and mice were immunized. An immune response against TATP was elicited, and selective antibodies were detected in the mouse serum, which should be very useful for the development of a TATP biosensor system. An ELISA with a limit of detection for TATP of 65 µg L-1 is shown. KW - TATP KW - Triacetone triperoxide KW - Explosive KW - Antibody KW - Hapten immunoassay KW - Structure PY - 2010 U6 - https://doi.org/10.1021/la1018339 SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 19 SP - 15418 EP - 15423 PB - American Chemical Society CY - Washington, DC AN - OPUS4-22469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - rac-(1R,2R,4S)-1,2-Dibromo-4-[(1R)-1,2-dibromoethyl]cyclohexane N2 - In the title compound, C8H12Br4, the cyclohexane ring exhibits a chair conformation. The C-Br distances range from 1.964 (6) to 1.985 (5) Å and the C-C distances range from 1.496 (6) to 1.543 (7) Å. Short intermolecular BrBr contacts [3.467 (4) Å] occur in the crystal. PY - 2010 U6 - https://doi.org/10.1107/S160053681004763X SN - 1600-5368 VL - 66 IS - 12 SP - o3318,sup-1 - o3318,sup-7 PB - Munksgaard CY - Copenhagen AN - OPUS4-22616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Kraehnert, R. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - New insights of the nucleation and growth process of gold nanoparticles via in situ coupling of SAXS and XANES N2 - Although metallic nanoparticles play an important role in the area of nanotechnology, a coherent mechanistic explanation for the evolution of the particles during their chemical synthesis has not yet been provided in many cases. To gain a profound understanding of the growth mechanism of colloidal nanoparticles, new approaches using Small Angle X-Ray Scattering (SAXS) combined with X-ray absorption near-edge structure (XANES) are presented. This combination allows for insights into two prominent syntheses routes of gold nanoparticles (GNP): The 'slow' reaction using sodium citrate (30-90 min) as a reducing agent and the 'fast' reaction employing NaBH4 (within few seconds). In the first case data derived with the coupled XANES and SAXS suggests a four-step particle formation mechanism. For the second system a time resolution in the order of 100-200 ms was achieved by coupling a common laboratory SAXS instrument with a microstructured mixer, which allows data acquisition in a continuous-flow mode. The results indicate a coalescence driven growth process. Based on the capabilities to deduce the size, number and polydispersity of the particles, the results of both methods enable the development of mechanistic schemes explaining the different phases of particle formation and growth, thus providing a basis for improved control over the synthesis processes. KW - SAXS KW - XANES KW - Nanoparticle formation PY - 2010 U6 - https://doi.org/10.1088/1742-6596/247/1/012051 SN - 1742-6588 SN - 1742-6596 VL - 247 IS - 1 SP - 012051-1 - 012051-10 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-22684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, C. A1 - Ikeda-Ohno, A. A1 - Emmerling, Franziska A1 - Kraus, Werner A1 - Bernhard, G. T1 - Comparative investigation of the solution species [U(CO3)5]6- and the crystal structure of Na6[U(CO3)5].12H2O PY - 2010 U6 - https://doi.org/10.1039/B922624A SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 39 IS - 15 SP - 3744 EP - 3750 PB - RSC CY - Cambridge AN - OPUS4-23047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Ahner, T. T. A1 - Delißen, Friedmar A1 - Sokolov, S. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Kraehnert, R. T1 - Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation PY - 2010 U6 - https://doi.org/10.1021/ja906506j SN - 0002-7863 SN - 1520-5126 VL - 132 IS - 4 SP - 1296 EP - 1301 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - SAXS in combination with a free liquid jet for improved time-resolved in situ studies of the nucleation and growth of nanoparticles PY - 2010 U6 - https://doi.org/10.1039/c0cc03238g SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 46 IS - 48 SP - 9209 EP - 9211 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-23049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Dietzel, B. A1 - Schulz, B. A1 - Reck, Günter A1 - Hoffmann, Angelika A1 - Orgzall, I. A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles - relation between electronic properties and packing motifs N2 - Prerequisite for the rational design of functional organic materials with tailor-made electronic properties is the knowledge of the structure–property relationship for the specific class of molecules under consideration. This encouraged us to systematically study the influence of the molecular structure and substitution pattern of aromatically substituted 1,3,4-oxadiazoles on the electronic properties and packing motifs of these molecules and on the interplay of these factors. For this purpose, seven diphenyl-oxadiazoles equipped with methyl substituents in the ortho- and meta-position(s) were synthesized and characterized. Absorption and fluorescence spectra in solution served here as tools to monitor substitution-induced changes in the electronic properties of the individual molecules whereas X-ray and optical measurements in the solid state provided information on the interplay of electronic and packing effects. In solution, the spectral position of the absorption maximum, the size of Stokes shift, and the fluorescence quantum yield are considerably affected by ortho-substitution in three or four ortho-positions. This results in blue shifted absorption bands, increased Stokes shifts, and reduced fluorescence quantum yields whereas the spectral position and vibrational structure of the emission bands remain more or less unaffected. In the crystalline state, however, the spectral position and shape of the emission bands display a strong dependence on the molecular structure and/or packing motifs that seem to control the amount of dye–dye-interactions. These observations reveal the limited value of commonly reported absorption and fluorescence measurements in solution for a straightforward comparison of spectroscopic results with single X-ray crystallography. This underlines the importance of solid state spectroscopic studies for a better understanding of the interplay of electronic effects and molecular order. KW - Diphenyl-oxadiazoles KW - X-ray structure KW - Packing motif KW - Optical properties KW - Fluorescence quantum yield PY - 2011 U6 - https://doi.org/10.1016/j.molstruc.2010.11.071 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 988 IS - 1-3 SP - 35 EP - 46 PB - Elsevier CY - Amsterdam AN - OPUS4-23253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhlich, Paul A1 - Emmerling, Franziska A1 - Piechotta, Christian A1 - Nehls, Irene T1 - Methyl 3,5,5,6,8,8-hexamethyl-5,6,7,8-tetrahydronaphthalene-2-carboxylate (AHTN-COOMe) N2 - Crystals of the title compound, C18H26O2, were grown from ethyl acetate. Due to the racemic precursor, the title compound is also obtained as a racemate. Disorder was observed during structure refinement, originating from two possible half-chair conformations of the non-aromatic ring. The disorder was refined by introducing split positions in the cyclo-hexane ring regarding the two possible R and S-enantiomers at the chiral CH group [ratio 0.744 (3):0.256 (3)]. The crystal structure features pairs of inversion-related molecules connected by pairs of non-classical C–H···O hydrogen bonds. KW - AHTN KW - Tonalide KW - Cyclic musk KW - AHTN-COOMe KW - Disinfection by-product KW - Esterification PY - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-232769 SN - 1600-5368 VL - E67 IS - 2 SP - o485, sup-1 EP - sup-11 PB - Munksgaard CY - Copenhagen AN - OPUS4-23276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Huacuja Sánchez, Jesús A1 - Wang, D.-Y. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Heinrich, G. A1 - Schönhals, Andreas T1 - Structure - property relationships of nanocomposites based on polypropylene and layered double hydroxides N2 - Nanocomposites based on polypropylene (PP) and organically modified ZnAl layered double hydroxides (ZnAl-LDH) were prepared by melt blending and investigated by a combination of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS), and dielectric relaxation spectroscopy (DRS). An average number of stack size of LDH layers is calculated by analyzing the SAXS data which is close to that of pure organically modified ZnAl-LDH. Scanning microfocus SAXS investigations show that the ZnAl-LDH is homogeneously distributed in the PP matrix as stacks of 4–5 layers with an intercalated morphology. DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 40% LDH where the crystallization of PP is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion dodecylbenzenesulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polypropylene matrix which is otherwise dielectrically invisible (low dipole moment). As a main result, it is found that the glass transition temperature in this interfacial region is by 30 K lower than that of pure polypropylene. This is accompanied by a drastic change of the fragility parameter deduced from the relaxation map. KW - Nanocomposites KW - Layered double hydroxide KW - Dielectric spectroscopy KW - X-ray scattering KW - Polypropylene PY - 2011 U6 - https://doi.org/10.1021/ma200323k SN - 0024-9297 SN - 1520-5835 VL - 44 IS - 11 SP - 4342 EP - 4354 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walther, M. A1 - Matterna, M. A1 - Juran, S. A1 - Fähnemann, S. A1 - Stephan, H. A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - Imidazole-containing bispidine ligands: synthesis, structure and Cu(II) complexation N2 - The preparation and characterization of tris-pyridyl bispidine (3,7-diazabicyclo[3.3.1]nonane) derivatives with benzimidazole and imidazole donor groups at the N-3 position of the bispidine Skeleton and their copper(II) complexes are reported. The impact of the hetaryl substituents on the configurational isomerism of piperidones and their corresponding bispidones has been studied by NMR spectroscopy, revealing the exclusive appearance in the enol form for the piperidones in solution and the trans-configuration regarding the two pyridyl substituents, as well as the sole formation of the unsymmetric exo-endo isomers for the corresponding bispidones. Thus, the bispidones are preorganized ligands for building pentacoordinated complexes, confirmed by the preparation and characterization of the corresponding Cu(II) complexes. Of the di-pyridyl piperidones with benzimidazole and imidazole substituents, and of the Cu(II) complex of the benzimidazole-containing bispidone, Crystals have become available for the analysis by X-ray diffraction, showing that the piperidones form the enol tautomers also in the solid state. KW - Piperidone KW - Bispidine KW - Copper(II) KW - Configuration isomerism PY - 2011 SN - 0932-0776 SN - 0340-5087 SN - 0044-3174 VL - 66b SP - 721 EP - 728 PB - Verl. d. Zeitschrift für Naturforschung CY - Tübingen AN - OPUS4-24091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, S. E. A1 - Müller, L. A1 - Barrea, R. A1 - Kampf, C.J. A1 - Leiterer, Jork A1 - Panne, Ulrich A1 - Hoffmann, T. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates N2 - During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PY - 2011 U6 - https://doi.org/10.1039/c0nr00761g SN - 2040-3364 SN - 2040-3372 IS - 3 SP - 1158 EP - 1165 PB - RSC Publ. CY - Cambridge AN - OPUS4-23355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Müller, Urs A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Deciphering the sulfate attack of cementitious materials by high-resolution micro-x-ray diffraction N2 - The durability of cementitious materials depends, among others, on their resistance against chemical attack during the service life of a building. Here, we present an approach to analyze changes in the phase composition due to chemical attack in the form of sulfate ingress within the microstructure. Micro-X-ray (µX-ray) diffraction using synchrotron radiation in Debye–Scherrer (transmission) geometry allowed a spatial resolution of 10 µm. Phase transformations in the wake of damaging processes were observed in a detailed high-resolution imaging study. In comparison, samples containing supplementary cementitious materials were investigated and used to reconstruct the influence of different degeneration processes in detail. Additionally, reaction fronts within the bulk were localized by micro-X-ray fluorescence analysis. The experimental setup provided the possibility for analyzing the phase assemblage of a given sample without destroying the microstructure. The specimens for phase analysis are thick sections of the primary material and can be used for further microscopic analysis of the microstructure and microchemistry, e.g., scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDX) or Raman spectroscopy. PY - 2011 U6 - https://doi.org/10.1021/ac200181g SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 10 SP - 3744 EP - 3749 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Takao, S. A1 - Takao, K. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Scheinost, A.C. A1 - Bernhard, G. A1 - Hennig, C. T1 - First hexanuclear U IV and Th IV formate complexes - Structure and stability range in aqueous solution KW - Actinides KW - Polynuclear species KW - Formic acid KW - Bridging ligands PY - 2009 U6 - https://doi.org/10.1002/ejic.200900899 SN - 1434-1948 SN - 1099-0682 VL - 2009 IS - 32 SP - 4771 EP - 4775 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-20329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Fitch, A.N. A1 - Evans, A. A1 - Ibberson, R.M. A1 - Többens, D.M. A1 - Cranswick, L.M.D. A1 - Dörfel, Ilona A1 - Emmerling, Franziska A1 - Matschat, Ralf T1 - Structural characterization of a coarse-grained transparent silicon carbide powder by a combination of powder diffraction techniques N2 - Diffraction of hard synchrotron radiation as well as constant-wavelength and time-of-flight neutron diffraction were used for the structural characterization of a silicon carbide powder having extremely low levels of chemical impurities, high perfection of the crystalline lattice and a grain size of up to 150 µm. The presence of three polytypes was ascertained and the ratios of their mass fractions were determined to be w15R : w6H = 0.002,3(8) and w4H : w6H = 0.000,6(2). KW - Silicon carbide KW - Polytypes KW - Phase quantification KW - Reference material PY - 2009 U6 - https://doi.org/10.1524/zksu.2009.0009 SN - 0930-486X VL - 30 EPDIC 2008 SP - 61 EP - 66 PB - Oldenbourg CY - München AN - OPUS4-20561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction - A contribution to the European project SUSAN N2 - The sequence of reactions accompanying the thermochemical treatment of an iron- and aluminium-bearing sewage sludge ash was ascertained by investigating two systematic series of samples. The ash was thermochemically treated in a lab-scale rotary furnace after mixing it with a chlorine-donor, either CaCl2 or MgCl2. Within each of these two sample series only a single process parameter, the reaction temperature, was varied, namely between 350 and 1050°C. It was found, that among the numerous crystalline phases present in the raw ash only quartz and hematite continue to exist after thermochemical treatments carried out at 1050°C, whereas all other components undergo at least one decomposition-recrystallization cycle. Some of the components re-crystallize even several times. It was proved that the restructuring of the calcium- and phosphorus-bearing mineral phases proceeds via the formation of chlorspodioside, Ca2PO4Cl. The influence of the type of chlorine-donor on the final product was elucidated in detail and - to the best of our knowledge - for the first time crystalline AlPO4 was found in a sewage sludge ash and its decomposition was investigated, too. KW - XRD KW - Phosphorus recovery KW - Sewage sludge ash KW - Urban mining KW - Fertilizers PY - 2009 U6 - https://doi.org/10.1524/zksu.2009.0068 SN - 0930-486X VL - 30 EPDIC 2008 SP - 459 EP - 464 PB - Oldenbourg CY - München AN - OPUS4-20562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Leiterer, Jork A1 - Kneipp, Janina A1 - Rössler, E. A1 - Panne, Ulrich A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Combined synchrotron XRD/Raman measurements: In situ identification of polymorphic transitions during crystallization processes N2 - A combination of two analytical methods, time-resolved X-ray diffraction (XRD) and Raman spectroscopy, is presented as a novel tool for crystallization studies. An acoustic levitator was employed as sample environment. This setup enables the acquisition of XRD and Raman data in situ simultaneously within a 20 s period and hence permits investigation of polymorphic phase transitions during the crystallization process in different solvents (methanol, ethanol, acetone, dichloromethane, acetonitrile). These real time measurements allow the determination of the phase content from the onset of the first crystalline molecular assemblies to the stable system. To evaluate the capability of this approach, the setup was applied to elucidate the crystallization process of the polymorphic compound nifedipine. The results indicate the existence of solvent-dependent transient phases during the crystallization process. The quality of the data allowed the assignment of the lattice constants of the hitherto unknown crystal structure of the β-polymorph. KW - Synchrotron radiation KW - XRD KW - Raman spectroscopy KW - Polymorphism KW - Crystallization KW - Acoustic levitation KW - Nifedipine PY - 2010 U6 - https://doi.org/10.1021/la100540q SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 13 SP - 11233 EP - 11237 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Towards novel pseudo-polymorphs of nifedipine: elucidation of a slow crystallization process N2 - The crystallization of nifedipine was studied by means of synchrotron-X-ray diffraction, single-crystal X-ray structural analysis, and Raman spectroscopy. The results of slow evaporation (24 h in minimum) using dimethyl sulfoxide (DMSO) are presented. Since fast crystallization processes (typically minutes) in different solvents always led to the final formation of the thermodynamically most stable α-polymorph of nifedipine, we observed a novel pseudo-polymorph due to slow crystallization from DMSO. The single-crystal X-ray structure of the solvated species nifedipine·DMSO (1:1) is reported for the first time. In addition, the crystallization process on surfaces was followed by means of light microscopy and environmental scanning electron microscopy (ESEM) coupled with energy-dispersive X-ray spectroscopy (EDS) analysis. Different diffractions pattern and Raman spectra were observed for crystals grown from stock solution and those obtained by drying the solution on soda lime silicate surfaces. KW - Synchrotron radiation KW - Polymorphism KW - Crystallization KW - Nifedipine PY - 2010 U6 - https://doi.org/10.1021/cg100186v SN - 1528-7483 VL - 10 IS - 6 SP - 2693 EP - 2698 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-21398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Troyanov, S. A1 - Noack, J. A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Alternariol N2 - In the title compound (systematic name: 3,7,9-trihydroxy-1-methyl-6H-benzo[c]chromen-6-one), C14H10O5, the methyl group is shifted out of the molecular plane due to a steric collision, thus causing a slight twist of the benzene rings. The molecular structure is stabilized by an intramolecular O-H...O hydrogen bond, generating an S(6) ring. In the crystal, molecules are connected by intermolecular O-H...O hydrogen bonds into a three-dimensional network. KW - Alternariol KW - Kristallstruktur PY - 2010 U6 - https://doi.org/10.1107/S1600536810017502 SN - 1600-5368 VL - 66 IS - 6 SP - o1366 PB - Munksgaard CY - Copenhagen AN - OPUS4-21400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stößer, R. A1 - Feist, M. A1 - Patzwaldt, K. A1 - Menzel, Michael A1 - Emmerling, Franziska ED - Brooks, H. T1 - Redox reactions of K3[Fe(CN)6] during mechanochemically stimulated phase transitions of AlOOH N2 - Thermally induced redox reactions of K3[Fe(CN)6] (1) were investigated for a broad temperature range by thermal methods and structure analytical methods (ESR and Mößbauer spectroscopy, X-ray Powder diffraction and XANES). Based on the influence of the mechanically activated and transforming matrices 2 and 3, redox processes can be tuned to form doped Al2O3 systems which contain either isolated Fe3+ centres or redox active phases and precursors like (Al1-xFex)2O3 (4), (Al3-xFex)O4 (5), Fe3O4, Fe2O3 and Fe0. The phase Fe3C and the chemically reactive C-species were detected during the reaction of 1. The final composition of the doped products of α-Al2O3 is mainly influenced by the chemical nature of the Fe doping component, the applied temperature and time regime, and the composition of the gas phase (N2, N2/O2 or N2/H2). From the solid state chemistry point of view it is interesting that the transforming matrix (2 and 3) possesses both oxidative and protective properties and that the incorporation of the Fe species can be performed systematically. KW - A. Inorganic compounds KW - C. Mössbauer spectroscopy KW - C. Thermogravimetric analysis KW - D. Electron paramagnetic resonance KW - ESR-Spektroskopie KW - Kaliumhexacyanoferrat(III) KW - Mechanische Aktivierung KW - Mößbauer-Spektroskopie KW - Redoxreaktionen KW - TA-MS-Messungen PY - 2011 U6 - https://doi.org/10.1016/j.jpcs.2011.03.016 SN - 0022-3697 VL - 72 IS - 6 SP - 794 EP - 799 PB - Pergamon Press CY - New York, NY AN - OPUS4-23685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Reuther, H. A1 - Vogel, Christian A1 - Adamczyk, Burkart A1 - Menzel, Michael A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - First identification of the tridymite form of AlPO4 in municipal sewage sludge ash N2 - Sewage sludge and sewage sludge ashes (SSA) are produced in huge amounts at municipal waste water treatment plants (WWTP) all around the world and have become an issue for many urbanized areas. To deal with this unceasing mass flow in an ecologically and economically responsible way a comprehensive chemical and structural characterization of all types of SSA is needed. X-ray powder diffraction (XRD) is one of the most promising analytical methods for this task. Although, there has been ample chemical evidence showing that many SSA contain aluminium phosphate as a major component up to now no aluminium phosphate or aluminium-rich mixed phosphate phase has been reported to be identified by XRD in a SSA produced at a mono-incineration facility. The outcome of the present com-bined XRD and Mossbauer spectroscopy investigation provides comprehensive evidence closing this gap for the first time. KW - Aluminium phosphate KW - AlPO4 KW - Tridymite KW - Sewage sludge ash KW - Incinerator KW - Ash PY - 2011 U6 - https://doi.org/10.1524/zkpr.2011.0067 SN - 0044-2968 VL - 1 SP - 443 EP - 448 PB - Oldenbourg CY - München AN - OPUS4-24297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riddell, N. A1 - Becker, Roland A1 - Chittim, B. A1 - Emmerling, Franziska A1 - Köppen, Robert A1 - Lough, A. A1 - McAlees, A. A1 - McCrindle, R. T1 - Preparation and X-ray structural characterization of further stereoisomers of 1,2,5,6,9,10-hexabromocyclododecane N2 - Technical 1,2,5,6,9,10-hexabromocyclododecane (HBCD) consists largely of three diastereomers (α-, β-, and γ-HBCD) produced by the trans addition of bromine to cis,trans,trans-cyclododeca-1,5,9-triene (CDT). However, another seven diastereomers are theoretically possible and may be produced by trans addition of bromine across the double bonds of the other three isomers of 1,5,9-CDT. There are indications that small amounts of the minor HBCD isomers may be present in commercial HBCD mixtures or in products containing this brominated flame retardant (BFR). Such minor components may indeed derive from traces of other 1,5,9-CDTs in the cis, trans, trans starting material, however their formation may also be possible through isomerizations during the processing of this BFR or by bioisomerization subsequent to its release into the environment. Two of the seven additional diastereomers (δ- and ε-HBCD) were synthesized previously from trans,trans,trans-CDT. We now report the preparation of the remaining five diastereomers, ζ-, η-, and θ-HBCD from cis,cis,trans-CDT and ι- and κ-HBCD from cis,cis,cis-CDT, and their characterization by 1H NMR spectroscopy and X-ray crystallography. The availability of these further diastereomers of HBCD should aid in determining if the minor isomers are present in commercial samples of this BFR, in products containing HBCDs, or in environmental samples. We have also carried out an X-ray crystal structure determination on ε-HBCD, so that crystal structures are now available for all 10 HBCD diastereomers. KW - Brominated flame retardants KW - HBCDs KW - Minor isomers KW - X-ray PY - 2011 U6 - https://doi.org/10.1016/j.chemosphere.2011.06.014 SN - 0045-6535 SN - 0366-7111 VL - 84 IS - 7 SP - 900 EP - 907 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-24298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathis, Anett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Galhardo, C. E. A1 - De Robertis, E. A1 - WANG, H. A1 - Mizuno, K. A1 - Kurokawa, A. A1 - Unger, Wolfgang T1 - Final report of CCQM-K136 measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3 N2 - The CCQM-K136 key comparison for determination of the porosity properties of aluminum oxide has been organized jointly by the surface and micro/nano analysis working groups of CCQM to test the abilities of the metrology institutes to measure the porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3. Ural Scientific Research Institute for Metrology (UNIIM) acted as the coordinating laboratory for this comparison with BAM Federal Institute for Materials Research and Testing (BAM) as co-coordinating laboratory. Five NMIs and one DI participated in this key comparison. All participants used a gas adsorption method, here nitrogen adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. KW - BET specific surface area KW - Specific adsorption KW - Pore diameter KW - Specific pore volume KW - Nanoporous Al2O3 PY - 2016 UR - http://iopscience.iop.org/article/10.1088/0026-1394/53/1A/08014 U6 - https://doi.org/10.1088/0026-1394/53/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 2016 IS - 53 Technical Supplement SP - Article 08014, 1 EP - 39 PB - IOPscience AN - OPUS4-38282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Wenzel, Klaus-Jürgen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Quantitative determination of activation energies in mechanochemical reactions N2 - Mechanochemical reactions often result in 100% yields of single products, making purifying procedures obsolete. Mechanochemistry is also a sustainable and eco-friendly method. The ever increasing interest in this method is contrasted by a lack in mechanistic understanding of the mechanochemical reactivity and selectivity. Recent in situ investigations provided direct insight into formation pathways. However, the currently available theories do not predict temperature T as an influential factor. Here, we report the first determination of an apparent activation energy for a mechanochemical reaction. In a temperaturedependent in situ study the cocrystallisation of ibuprofen and nicotinamide was investigated as a model system. These experiments provide a pivotal step towards a comprehensive understanding of milling reaction mechanisms. KW - Mechanochemistry KW - Cocrystal KW - Activation energy KW - Milling PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-377444 SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 33 SP - 23320 EP - 23325 AN - OPUS4-37744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bach, S. A1 - Panthöfer, M. A1 - Bienert, Ralf A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Role of water during crystallization of amorphous cobalt phosphate nanoparticles N2 - The transformation of amorphous precursors into crystalline solids and the associated mechanisms are still poorly understood. We illuminate the formation and reactivity of an amorphous cobalt phosphate hydrate precursor and the role of water for its crystallization process. Amorphous cobalt phosphate hydrate nanoparticles (ACP) with diameters of ∼20 nm were prepared in the absence of additives from aqueous solutions at low concentrations and with short reaction times. To avoid the kinetically controlled transformation of metastable ACP into crystalline Co₃(PO₄)₂ × 8H₂O (CPO) its separation must be fast. The crystallinity of ACP could be controlled through the temperature during precipitation. A second amorphous phase (HT-ACP) containing less water and anhydrous Co₃(PO₄)₂ was formed at higher temperature by the release of coordinating water. ACP contains approximately five molecules of structural water per formula unit as determined by thermal analysis (TGA) and quantitative IR spectroscopy. The Co²+ coordination in ACP is tetrahedral, as shown by XANES/EXAFS spectroscopy, but octahedral in crystalline CPO. ACP is stable in the absence of water even at 500 °C. In the wet state, the transformation of ACP to CPO is triggered by the diffusion and incorporation of water into the structure. Quantitative in situ IR analysis allowed monitoring the crystallization kinetics of ACP in the presence of water. KW - Fluorapatite-gelatin nanocomposites KW - Calcium-carbonate KW - Zinc phosphate KW - Crystal-growth KW - Nucleation KW - Polymorphism PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.6b00208 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 8 SP - 4232 EP - 4239 PB - ACS Publications AN - OPUS4-37616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Lubjuhn, Dominik A1 - Greiser, Sebastian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Supply and demand in the ball mill: competitive cocrystal reactions N2 - The stability of different theophylline cocrystals under milling conditions was investigated by competitive cocrystal reactions. To determine the most stable cocrystal form under milling conditions, the active pharmaceutical ingredient theophylline was either ground with two similar coformers (benzoic acid, benzamide, or isonicotinamide), or the existing theophylline cocrystals were ground together with a competitive coformer. All competitive reactions were investigated by in situ powder X-ray diffraction disclosing the formation pathway of the milling processes. On the basis of these milling reactions, a stability order (least to most stable) was derived: tp/bs < tp/ba < tp/ina < bs/ina. KW - Mechanochemistry KW - Cocrystal KW - Milling PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.6b00928 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 10 SP - 5843 EP - 5851 AN - OPUS4-38097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-384217 SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Fischer, Franziska A1 - Kulla, Hannes A1 - Wilke, Manuel T1 - In situ analysis of mechanochemical reactions using combined X-ray diffraction and Raman spectroscopy N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. Besides well-known MOFs like ZIF-8, the formation process of new metal phosphonates and model cocrystals could be studied in detail. The syntheses pathway of the different compounds could be revealed. The results prove that the presented method combination is applicable for a wide range of materials and will provide the necessary understanding to tune and optimize mechanochemically synthesized compounds. T2 - 3oth Meeting of the European Crystallographic Association CY - Basel, Switzerland DA - 28.08.2016 KW - Mechanochemistry KW - In situ PY - 2016 AN - OPUS4-38363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska ED - de Oliveira Guilherme Buzanich, Ana T1 - Time- and spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot: new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Single-shot XAFS KW - Time resolution KW - Spatial resolution KW - Divergent XAFS PY - 2016 U6 - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 VL - 23 SP - 769 EP - 776 PB - International Union of Crystallography AN - OPUS4-38370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Meng, Birgit A1 - Emmerling, Franziska T1 - Monitoring of sulphate attack on hardened cement paste studied by synchrotron XRD N2 - The complex matter of external sulphate attack on cement-based construction materials is still not completely understood. The concentration of sulphate is a crucial factor for the formation of secondary phases and phase transitions of cement hydrates due to sulphate ingress into the microstructure. The sulphate attack on building materials for high and low sulphate concentrations was monitored by laboratory experiments. Hardened cement paste consisting of ordinary Portland cement (CEM I) were exposed to aqueous solutions of sodium sulphate for 18 months. Three sample compositions were used for this research, including different supplementary cementitious materials (SCM). The phase composition was determined for different time spans by high resolution synchrotron X-ray diffraction. Cross sections of exposed cement prisms were investigated as a representation of the microstructural profile. Based on the data, a temporal and spatial determination of the stages of the sulphate attack and the deterioration course was possible. Cement matrices blended with slag showed the highest resistance against sulphate attack. KW - Cement paste KW - Sulphate attack KW - Mineral additions KW - Concentration KW - Monitoring PY - 2015 U6 - https://doi.org/10.1016/j.solidstatesciences.2015.08.006 SN - 1293-2558 SN - 1873-3085 VL - 48 SP - 278 EP - 285 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-34281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Joester, Maike A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Survival of the fittest: competitive co-crystal reactions in the ball mill N2 - The driving forces triggering the formation of co-crystals under milling conditions were investigated by using a set of multicomponent competitive milling reactions. In these reactions, different active pharmaceutical ingredients were ground together with a further compound acting as coformer. The study was based on new co-crystals including the coformer anthranilic acid. The results of the competitive milling reactions indicate that the formation of co-crystals driven by intermolecular recognition are influenced and inhibited by kinetic aspects including the formation of intermediates and the stability of the reactants. PY - 2015 U6 - https://doi.org/10.1002/chem.201500925 SN - 0947-6539 SN - 1521-3765 VL - 21 IS - 42 SP - 14969 EP - 14974 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-34861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Michaelis, Matthias A1 - Krahl, T. A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4: the now deciphered main constituent of a municipal sewage sludge ash from a full-scale incineration facility N2 - For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on 'as received' SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators. KW - Aluminum phosphate KW - Chemical stabilization of high-temperature forms KW - Cristobalite form KW - Stacking disorder KW - Incinerator ash KW - Sewage sludge ash PY - 2015 U6 - https://doi.org/10.1017/S0885715614001213 SN - 0885-7156 VL - 30 IS - Supplement S 1 SP - S31 EP - S35 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-33435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Fischer, Franziska A1 - Wilke, Manuel A1 - Wenzel, Klaus-Jürgen A1 - Emmerling, Franziska T1 - Direct in situ investigation of milling reactions using combined x-ray diffraction and raman spectroscopy N2 - The combination of two analytical methods including time-resolved in situ X-ray diffraction (XRD) and Raman spectroscopy provides a new opportunity for a detailed analysis of the key mechanisms of milling reactions. To prove the general applicability of our setup, we investigated the mechanochemical synthesis of four archetypical model compounds, ranging from 3D frameworks through layered structures to organic molecular compounds. The reaction mechanism for each model compound could be elucidated. The results clearly show the unique advantage of the combination of XRD and Raman spectroscopy because of the different information content and dynamic range of both individual methods. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structures and thus obtaining reliable data for mechanistic studies. PY - 2015 U6 - https://doi.org/10.1002/anie.201409834 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 54 IS - 6 SP - 1799 EP - 1802 PB - Wiley-VCH CY - Weinheim AN - OPUS4-34630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, M.C. A1 - Stroh, Julia A1 - Malaga, K. A1 - Meng, Birgit A1 - Panne, Ulrich A1 - Emmerling, Franziska T1 - Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction N2 - Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism. KW - Portland cement KW - In-situ KW - X-Ray diffraction KW - EDX KW - Durability KW - Chloride attack PY - 2015 U6 - https://doi.org/10.1016/j.solidstatesciences.2015.03.021 SN - 1293-2558 SN - 1873-3085 VL - 44 SP - 45 EP - 54 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-33171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Scholz, G. A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Emmerling, Franziska T1 - Synthesis, structure determination, and formation of a theobromine: oxalic acid 2:1 cocrystal N2 - The structure and the formation pathway of a new theobromine : oxalic acid (2 : 1) cocrystal are presented. The cocrystal was synthesised mechanochemically and its structure was solved based on the powder X-ray data. The mechanochemical synthesis of this model compound was studied in situ using synchrotron XRD. Based on the XRD data details of the formation mechanism were obtained. The formation can be described as a self-accelerated ('liquid like') process from a highly activated species. KW - ssNMR spectroscopy KW - Synchrotron measurements KW - API molecule PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-331567 SN - 1466-8033 VL - 17 IS - 4 SP - 824 EP - 829 CY - London, UK AN - OPUS4-33156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Purohit, Purv A1 - Kang, N. A1 - Wang, D.-Y. A1 - Falkenhagen, Jana A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides N2 - Nanocomposites based on poly(ʟ-lactide) (PLA) and organically modified MgAl Layered Double Hydroxides (MgAl-LDH) were prepared by melt blending and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Scanning microfocus SAXS investigations show that the MgAl-LDH is homogeneously distributed in the matrix as stacks of 6 layers and/or partly exfoliated layers. DSC and WAXS show that the degree of crystallinity decreases linearly with the content of LDH. The extrapolation of the dependencies (DSC and WAXS) to zero estimates a limiting concentration of LDH CCri of ca. 21 wt% where the crystallization of PLA is completely suppressed by the nanofiller. The dielectric behavior of neat PLA show two relaxation regions, a β-relaxation at low temperatures related to localized fluctuations and the α-relaxation at higher temperatures due to the dynamic glass transition. The dielectric spectra of the nanocomposites show several additional relaxation processes compared to neat PLA which are discussed in detail. For the nanocomposites around 260 K (ƒ = 1 kHz) an additional process is observed which intensity increases with increasing concentration of LDH. This process is mainly attributed to the exchanged dodecylbenzene sulfonate (SDBS) molecules which are adsorbed at the LDH layers and form a mixed phase with the polymer close to the layers and stacks. An analysis of this process provides information about the molecular dynamics in the interfacial region between the LDH layers and the PLA matrix which reveal glassy dynamics in this region. In the temperature range around 310 K (ƒ = 1 kHz) a further process is observed. Its relaxation rate has an unusual saddle-like temperature dependence. It was assigned to rotational fluctuations of water molecules in a nanoporous environment provided by the LDH filler. Above the glass transition temperature a further process is observed at temperatures above. It is related to Maxwell/Wagner/Sillars polarization due to the blocking of charges at the nanofiller. KW - Polymer based nanocomposites KW - Polylactide KW - Layered double hydroxides KW - Dielectric spectroscopy PY - 2015 U6 - https://doi.org/10.1016/j.eurpolymj.2015.05.008 SN - 0014-3057 SN - 1873-1945 VL - 68 SP - 338 EP - 354 PB - Elsevier CY - Oxford AN - OPUS4-33257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Polte, J. A1 - Bernsmeier, D. A1 - Eckhardt, B. A1 - Paul, B. A1 - Bergmann, A. A1 - Strasser, P. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst N2 - Micro-structured reactors offer excellent mass and heat transport capabilities and can therefore sustain very high reaction rates and space–time-yields also for highly exothermic catalytic reactions. However, such high rates cannot be reached when the reactors are coated or filled with conventional catalysts powders. We present a strategy for the direct synthesis of highly active wall-coated supported catalysts via co-deposition of a pore template (here micelles formed from PEO-b-PPO-b-PEO) and a precursors for the metal oxide (TiCl4) along with a compatible precursor for the active metal (PdCl2). The obtained catalytic coatings possess a template-controlled open pore structure and excellent mechanical stability. Moreover, the active metal is highly dispersed and well-distributed across the coating also at high Pd loadings. The corresponding high activity along with rapid mass transfer enabled by the open pore system results in the best space–time-yields in the gas-phase hydrogenation of butadiene reported so far in literature for a supported catalyst. KW - Titanium oxide films KW - Palladium nanoparticle KW - Wall-coated supported catalysts KW - Template-controlled mesoporous materials KW - Hydrogenation of 1,3-butadiene PY - 2015 U6 - https://doi.org/10.1016/j.apcata.2014.12.044 SN - 0926-860X SN - 1873-3875 VL - 493 SP - 25 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-32465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Review of existing calibration or reference N2 - We report on calibration standards of nanoparticles meeting the definition of a nanomaterial given by the European Commission (EU 2011) which are relevant for the characterisation methods applied in the NanoDefine project. We found that the Impact of nanoparticles is outstanding in the scientific literature. A number of 270.000 paper titles on nanoparticles are listed in the Web of Science data base. But surprisingly, the availability of suitable certified standard reference materials is scarce. Only a few sources were found. For example, BAM provides the database Nanoscaled Reference Materials at http://www.nano-refmat.bam.de/en/ in cooperation with the ISO/TC 229 Nanotechnologies. In addition, two publications from 2013 on nanoscale reference materials are available. Candidates of nano-(certified) reference materials from other ongoing or just finished FP6 and FP7 nano-metrology projects have been extracted from the Compendium of Projects in the European NanoSafety Cluster (Compendium NSC, 2013). Recommendations for selection of representative test materials and calibration standards for NanoDefine internal tasks, respectively, are also given. KW - Nanomaterial KW - Reference materials KW - Certified reference materials PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389836 UR - http://www.nanodefine.eu/index.php/downloads/nanodefine-technical-reports SP - 1 EP - 18 CY - Wageningen, The Netherlands AN - OPUS4-38983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Holger A1 - Baldofski, Stefanie A1 - Hoffmann, Kristin A1 - Flemig, Sabine A1 - Silva, C. P. A1 - Esteves, V. I. A1 - Emmerling, Franziska A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Structural considerations on the selectivity of an immunoassay for sulfamethoxazole N2 - Sulfamethoxazol (SMX),a sulfonamide, is a widely used bacteriostatic antibiotic and therefore a promising marker for the entry of anthropogenic Pollution in the environment. SMX is frequently found in wastewater and surface water. This study presents the production of high affinity and selective polyclonal antibodies for SMX and the development and Evaluation of a direct competitive enzyme-linked immunosorbent assay(ELISA)for the quantification of SMX in environmental watersamples. The crystal structures of the cross-reacting compounds sulfamethizole, N4-acetyl-SMX andsuccinimidyl-SMX were determined by x-ray diffraction aiming to explain their high cross-reactivity. These crystal structures are described for the first time. The quantification range of the ELISA is 0.82–63 µg/L. To verify our results, the SMX concentration in 20 environmental samples,including wastewater and surfacewater,was determined by ELISA and tandem mass spectrometry(MS/MS).A good Agreement of the measured SMX concentrations was found with average recoveries of 97–113%for the results of ELISA compared to LC-MS/MS. KW - X-Ray diffraction KW - ELISA KW - LC-MS/MS KW - Sulfamethoxazole PY - 2016 U6 - https://doi.org/10.1016/j.talanta.2016.05.049 SN - 0039-9140 SN - 1873-3573 IS - 158 SP - 198 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Prinz, Carsten A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Blocki, Anna A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Ultra-sonication of ZIF-67 crystals results in ZIF-67 nano-flakes N2 - Zeolitic Imidazolate Frameworks (ZIFs) are crystalline materials that comprise of metal nodes and Imidazole derivatives as linkers. ZIF-67 is often used in polymer composite materials e. g. for gas separation membranes. Post-synthesis treatment of ZIF-67 crystals with ultrasound leads to unforeseen plasticity that resulted in sintered ZIF-67 and ZIF-67 nano-flakes. Consequently, ultrasound increases the external surface area of ZIF-67 which might improve e.g. blending with polymers in composite materials. These new morphologies of ZIF-67 were characterized by transmission electron, scanning electron, and atomic force microscopy. The ultrasound treatment of ZIF-67 did not result in the formation of an amorphous framework or a meta-stable crystal structure as indicated by powder x-ray diffraction. In addition, ultra-sonicated ZIF-67 retained the high gas adsorption capacity and pore size compared to synthesized ZIF-67. The morphological changes are hard to detect with standard analytical methods that are usually utilized for MOF characterization. These findings also suggest that sonochemical treatment of ZIFs leads to structural effects beyond increasing the amount of nucleation clusters during sono-chemical synthesis, which is currently not addressed in the field. KW - ZIF PY - 2016 U6 - https://doi.org/10.1002/slct.201601513 SN - 2365-6549 VL - 1 IS - 18 SP - 5905 EP - 5908 AN - OPUS4-38496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Greiser, Sebastian A1 - Peifer, Dietmar A1 - Jäger, Christian A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemically Induced Conversion of Crystalline Benzamide Polymorphs by Seeding N2 - Benzamide has been known for its polymorphism for almost 200 years.Three polymorphic forms are described. To date,itwas only possible to crystallizeametastable form in amixture together with the thermodynamically most stable form I. Acomplete transformation of form Iinto the metastable form III by mechanochemical treatment has been achieved. Catalytic amounts of nicotinamide seeds were used to activate the conversion by mechanochemical seeding. NMR experiments indicated that the nicotinamide molecules were incorporated statistically in the crystal lattice of benzamide form III during the conversion. The transformation pathway was evaluated using in situ powder X-ray diffraction. KW - Nicotinamide KW - Benzamide KW - In situ reactions KW - Mechanochemistry KW - Polymorphs PY - 2016 U6 - https://doi.org/10.1002/anie.201607358 VL - 128 IS - 46 SP - 14493 EP - 14497 PB - WILEY-VCH CY - Weinheim AN - OPUS4-38472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanova, N. A1 - Tumanov, N. A1 - Robeyns, K. A1 - Fischer, Franziska A1 - Fusaro, L. A1 - Morelle, F. A1 - Ban, V. A1 - Hautier, G. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. A1 - Emmerling, Franziska T1 - Opening Pandora’s Box: Chirality, Polymorphism, and Stoichiometric Diversity in Flurbiprofen/Proline Cocrystals N2 - Proline has been widely used for various cocrystallization applications, including pharmaceutical cocrystals. Combining enantiopure and racemic flurbiprofen and proline, we discovered 18 new crystal structures. Liquid-assisted grinding proved highly efficient to explore all the variety of crystal forms. A unique combination of stateof-the-art characterization techniques, comprising variable temperature in situ X-ray diffraction and in situ ball-milling, along with other physicochemical methods and density functional theory calculations, was indispensable for identifying all the phases. Analyzing the results of in situ ball-milling, we established a stepwise mechanism for the formation of several 1:1 cocrystals via an intermediate 2:1 phase. The nature of the solvent in liquidassisted grinding was found to significantly affect the reaction rate and, in some cases, the reaction pathway. KW - Mechanochemistry KW - Polymorphs KW - In situ PY - 2018 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b01436 U6 - https://doi.org/10.1021/acs.cgd.7b01436 VL - 18 IS - 2 SP - 954 EP - 961 PB - American Chemical Society AN - OPUS4-44365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Blocki, A. A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating N2 - Equipping ZIF particles with a polyelectrolyte membrane provides functional groups at their interface, enabling further conjugations necessary for applications such as targeted drug delivery. Previous approaches to coat ZIF particles with polyelectrolytes led to surface corrosion of the template material. This work overcomes previous limitations by performing a Layer-by-Layer (LbL) polyelectrolyte coating onto ZIF-8 and ZIF-67 particles in nonaqueous environment. Using the 2-methylimidazolium salt of polystyrensulfonic acid instead of the acid itself and polyethyleneimine in methanol led to intact ZIF particles after polyelectrolyte coating. This was verified by electron microscopy. Further, zetapotential and atomic force microscopy measurements confirmed a continuous polyelectrolyte multilayer built up. The here reported adaption to the well-studied (LbL) polyelectrolyte selfassembly process provides a facile method to equip ZIF particles with a nanometer thin polyelectrolyte multilayer membrane. KW - Zeolithe KW - Molecular Organic Frameworks KW - MOF KW - ZIF KW - Layer-by-Layer KW - Beschichtung KW - Polyelektrolyt PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447729 SN - 2215-0382 VL - 22 SP - 14 EP - 17 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-44772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zauer, M. A1 - Prinz, Carsten A1 - Adolphs, J. A1 - Emmerling, Franziska A1 - Wagenführ, A. T1 - Sorption surfaces and energies of untreated and thermally modified wood evaluated by means of excess surface work (ESW) N2 - Water vapor sorption surface areas and sorption energies of untreated and thermally modified Norway spruce [Picea abies (L.) Karst.], sycamore maple (Acer pseudoplatanus L.) and European ash (Fraxinus excelcior L.) were investigated by means of dynamic vapor sorption (DVS) measurements and excess surface work (ESW) evaluation method, respectively. Adsorption and desorption experiments in the hygroscopic range and desorption tests from water saturation were conducted. Thermodynamically, ESW is the sum of the surface free energy and the isothermal isobaric work of sorption. From the amount adsorbed in the first Minimum a specific surface area similar to the BET surface area can be obtained. The results show that untreated spruce has a significantly higher specific water vapor Sorption surface and sorption energy compared to both hardwoods maple and ash. Thermal modification of the woods leads to a significant reduction of water vapor Sorption surface and sorption energy. The determined surface area and energy are higher in desorption direction than in adsorption direction, whereby the highest values in Desorption direction from water saturation, especially for maple and ash, were obtained. The surface areas calculated by means of the ESW method are similar to the surface areas calculated by means of the BET method, particularly in adsorption direction. KW - Excess surface work KW - Dynamic vapor sorption KW - Wood KW - BET PY - 2018 U6 - https://doi.org/10.1007/s00226-018-1021-2 SN - 1432-5225 SN - 0043-7719 VL - 52 IS - 4 SP - 957 EP - 969 PB - Springer CY - Berlin Heidelberg AN - OPUS4-44975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 U6 - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Hydrated and dehydrated Ca-coordination polymers based on benzene-dicarboxylates: mechanochemical synthesis, structure refinement, and spectroscopic characterization N2 - A series of Ca-based coordination polymers were prepared mechanochemically by milling Ca(OH)2 with phthalic acid (H2oBDC), isophthalic acid (H2mBDC), and terephthalic acid (H2pBDC). The hydrated compounds [Ca(oBDC)(H2O)], [Ca(mBDC)(H2O)3.4], and [Ca(pBDC)(H2O)3] were prepared for the first time via mechanochemical routes. The refined structures were validated by extended X-ray absorption data. The new dehydrated compound [Ca(oBDC)] (1-H2O), obtained after the thermal post-treatment of 1 in a reversible phase transition process, was determined ab initio based on the powder X-ray diffraction (PXRD) data. The materials were thoroughly characterized using elemental analysis, thermal analysis, and spectroscopic methods: magic-angle spinning NMR and attenuated total reflection-infrared spectroscopy. The specific surface areas and sorption properties of the hydrated and dehydrated samples were determined using the isotherms of gas sorption and dynamic vapor sorption measurements. KW - Mechanochemistry KW - XRD PY - 2018 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce01906h U6 - https://doi.org/10.1039/C7CE01906H VL - 20 SP - 946 EP - 961 PB - Royal Society of Chemistry AN - OPUS4-44440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-447057 SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Ca-Tetrafluorophthalate and Sr-isophthalate: mechanochemical synthesis and characterization in comparison with other Ca-and Sr-coordination polymers N2 - New Ca- and Sr-based coordination polymers (CPs) were mechanochemically synthesized by milling metal hydroxide samples (M = Ca, Sr) with tetrafluorophthalic acid (H2oBDC-F4) and isophthalic acid (H2mBDC). [Ca(oBDC-F4)(H2O)2] (1) exhibits a small surface area which is slightly increased after removing the crystal water. On the other hand, the hydrated sample of the nonfluorinated [Sr(mBDC)(H2O)3.4] (2) reveals a small BET surface area which remains unchanged even after the release of crystal water via thermal treatment. The new compounds 1 and 2 are similar to their Sr- and Ca-analogs, respectively. These findings are confirmed by thermal analysis, MAS NMR, and ATR-IR measurements, in addition to the Le Bail refinements for the measured powder X-ray data of 1 and 2. Ca- and Sr-CPs based on perfluorinated dicarboxylic systems and their nonfluorinated analogs diverse in structural and chemical properties depending on the geometries of the organic linkers and the presence of fluorine atoms. The fluorinations of organic ligands lead to the formation of fluorinated CPs with higher dimensionalities compared to their nonfluorinated counterparts. Conversely, the thermal stabilities of the latter are higher than those of the fluorinated CPs. KW - Mechanochemistry PY - 2018 U6 - https://doi.org/10.1039/c8dt00695d SN - 1477-9226 SN - 1477-9234 VL - 47 IS - 16 SP - 5743 EP - 5754 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-44696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization N2 - A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)$0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflectioninfrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments. KW - Mechanochemical synthesis KW - Barium KW - Fluorine KW - Coordination polymers KW - PXRD KW - MAS NMR spectroscopy PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1293255817310798 U6 - https://doi.org/10.1016/j.solidstatesciences.2018.03.013 SN - 1293-2558 SN - 1873-3085 VL - 79 SP - 99 EP - 108 PB - Elsevier AN - OPUS4-44880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitfeld, Steffen A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - BaF-benzenedicarboxylate: the first mechanochemical N2 - Anewbariumcoordination polymer, BaF-benzenedicarboxylate (BaF(p-BDC)0.5), with fluorine directly coordinated to the metal cation, was prepared by mechanochemical synthesis routes. Phase-pure BaF-benzenedicarboxylate was synthesized by milling starting either from barium hydroxide or from Barium acetate as sources for barium cations. In both cases, the second reactant was 1,4-benzenedicarboxylic acid (H2(p-BDC)). Ammonium fluoride was used as fluorinating agent directly at milling. This is the first mechanochemical synthesis of coordination polymers where fluorine is directly coordinated to the metal cation. Following the second possibility, barium acetate fluoride (Ba(OAc)F) is formed as ntermediate product after milling, and the new coordination polymer is accessible only after washing with water and dimethyl sulfoxide. The new compound BaF(p-BDC)0.5 was characterized by X-ray powder diffraction, FTIR-, and 19F, 1H-13C CP MAS NMR spectroscopies, DTA-TG, and elemental Analysis. KW - Milling KW - MOF PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2331-3 SN - 0022-2461 VL - 53 IS - 19 SP - 13682 EP - 13689 PB - Springer AN - OPUS4-45677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Haferkamp, Sebastian A1 - Kraus, Werner T1 - Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates N2 - The mechanochemical Knoevenagel condensation of three fluorinated benzaldehyde derivates and malononitrile was investigated. The reactions were performed under solvent- and catalyst-free conditions and resulted in highly crystalline products after crystallization from a viscous phase in the milling jar. The quality of the obtained crystals was sufficient for single-crystal X-ray diffraction circumventing a recrystallization step. To gain more information on the reaction, progress was investigated in situ using time-resolved Raman spectroscopy. The results show a direct conversion of the reactants. KW - C-C coupling KW - Knoevenagel condensation KW - In situ KW - Mechanochemistry PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2492-0 SN - 0022-2461 VL - 53 IS - 19 SP - 13713 EP - 13718 PB - Springer Link AN - OPUS4-45682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiffmann, J. A1 - Emmerling, Franziska A1 - Martins, Ines A1 - Van Wüllen, L. T1 - In-situ reaction monitoring of a mechanochemical ball mill reaction with solid state NMR N2 - We present an approach towards the in situ solid state NMR monitoring of mechanochemical reactions in a ball mill. A miniaturized vibration ball mill is integrated into the measuring coil of a home-built solid state NMR probe, allowing for static solid state NMR measurements during the mechanochemical reaction within the vessel. The setup allows to quantitatively follow the product evolution of a prototypical mechanochemical reaction, the formation of zinc phenylphosphonate from zinc acetate and phenylphosphonic acid. MAS NMR investigations on the final reaction mixture confirmed a reaction yield of 89% in a typical example. Thus, NMR spectroscopy may in the future provide complementary information about reaction mechanisms of mechanochemical reactions and team up with other analytical methods which have been employed to follow reactions in situ, such as Raman spectroscopy or X-ray diffraction. KW - Mechanochemistry KW - Solid state NMR KW - NMR probe Development PY - 2020 U6 - https://doi.org/10.1016/j.ssnmr.2020.101687 VL - 109 SP - 101687 PB - Elsevier Inc. AN - OPUS4-51283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, Annika A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled plasma mass spectrometry (ICP‐MS), infrared (IR) spectroscopy, 151Eu‐Mössbauer spectroscopy, X‐ray total scattering, and extended X‐ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - PQQ KW - Lanthanoide KW - Coordination chemistry KW - Rare earth elements separations PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512707 VL - 26 IS - 44 SP - 10133 EP - 10139 AN - OPUS4-51270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in cocrystal formations: in situ investigations of mechanochemical syntheses N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. We discuss our recent results investigating the formation of (polymorphic) cocrystals. First investigations of a mechanochemical synthesis under controlled temperature which allow determining the activation barrier are presented.6 Furthermore, X-ray diffraction and in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - CSEC Seminar University of Edinburgh CY - Edinburgh, Scotland DA - 16.05.2019 KW - Mechanochemistry KW - Acoustic levitation KW - In situ PY - 2019 AN - OPUS4-48098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-481872 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lumpe, H. A1 - Menke, A. A1 - Haisch, C. A1 - Mayer, P. A1 - Kabelitz, Anke A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Block, T. A1 - Pöttgen, R. A1 - Emmerling, Franziska A1 - Daumann, L. J. T1 - The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone N2 - Lanthanides (Ln) are critical raw materials, however, their mining and purification have a considerable negative environmental impact and sustainable recycling and separation strategies for these elements are needed. In this study, the precipitation and solubility behavior of Ln complexes with pyrroloquinoline quinone (PQQ), the cofactor of recently discovered lanthanide (Ln) dependent methanol Dehydrogenase (MDH) enzymes, is presented. In this context, the molecular structure of a biorelevant europium PQQ complex was for the first time elucidated outside a protein environment. The complex crystallizes as an inversion symmetric dimer, Eu2PQQ2, with binding of Eu in the biologically relevant pocket of PQQ. LnPQQ and Ln1Ln2PQQ complexes were characterized by using inductively coupled Plasma mass spectrometry (ICP-MS), infrared (IR) spectroscopy, 151Eu-Mössbauer spectroscopy, X-ray total scattering, and Extended X-ray absorption fine structure (EXAFS). It is shown that a natural enzymatic cofactor is capable to achieve Separation by precipitation of the notoriously similar, and thus difficult to separate, lanthanides to some extent. KW - Lanthanides KW - Structural Analysis KW - Separation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510821 SN - 0947-6539 VL - 26 SP - 1 EP - 8 PB - WILEY-VCH Verlag GmbH & co. KGaA AN - OPUS4-51082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira, P. F. M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Carmago, P. T1 - Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles N2 - Mechanochemistry is a promising alternative to solution-based protocols across the chemical sciences, enabling different types of chemistries in solvent-free and environmentally benign conditions. The use of mechanical energy to promote physical and chemical transformations has reached a high level of refinement, allowing for the design of sophisticated molecules and nanostructured materials. Among them, the synthesis of noble metal nanoparticles deserves special attention due to their catalytic applications. In this review, we discuss the recent progress on the development of mechanochemical strategies for the controlled synthesis of noble metal nanostructures. We start by covering the fundamentals of different preparation routes, namely top-down and bottom-up approaches. Next, we focus on the key examples of the mechanochemical synthesis of non-supported and supported metal nanoparticles as well as hybrid nanomaterials containing noble metals. In these examples, in addition to the principles and synthesis mechanisms, their performances in catalysis are discussed. Finally, a perspective of the field is given, where we discuss the opportunities for future work and the challenges of mechanochemical synthesis to produce well-defined noble metal nanoparticles. KW - Mechanochemistry KW - Nanoparticles PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512080 VL - 8 IS - 32 SP - 16114 AN - OPUS4-51208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irinia A1 - Emmerling, Franziska T1 - Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N0-Dipyridines: Structural diversity with varying ligand flexibility N2 - We studied the influence of coformers flexibility on the supramolecular assembly of 5-substituted resorcinol. Two cocrystals of orcinol (ORL) with two dipyridine molecules, i.e. 1,2-di(4-pyridyl)ethane (ORLeBPE) and 1,2-di(4-pyridyl)ethylene (ORLeBPY), were prepared by mechanochemical synthesis and slow evaporation of solvent. The new crystalline solids were thoroughly characterized by single crystal Xray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier-transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), and thermogravimetric analysis (TGA). Structural determination reveals that in both cocrystals, the phenolepyridine, i.e. OeH/N(py) heterosynthon takes the main role in the formation of cocrystals. In ORLeBPE, the components form infinite 1D zig-zag chains, which are extended to 2D layer structure by inter-chain CeH/O interactions between BPE hydrogen atoms and hydroxyl oxygen atoms of ORL. In ORLeBPY, the components form a 0D fourcomponent complex. Formation of the discrete assemblies is attributed to the comparative rigid nature of BPY, which restricts the formation of an extended network. KW - Cocrystal KW - Single crystal KW - X-ray diffraction KW - Mechanochemistry PY - 2020 U6 - https://doi.org/10.1016/j.molstruc.2020.128303 SN - 0022-2860 VL - 1217 SP - 128303 PB - Elsevier B.V. AN - OPUS4-51023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Heise, M. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - New 2D layered structures with direct fluorine-metal bonds: MF(CH3COO) (M: Sr, Ba, Pb) N2 - New coordination polymers with 2D network structures with fluorine directly coordinated to the metal ion were prepared both via mechanochemical synthesis and fluorolytic sol–gel synthesis. Depending on the synthesis route, the samples show different particle sizes, according to SEM imaging. The crystal structures of barium acetate fluoride, strontium acetate fluoride, and lead acetate fluoride (BaFIJCH3COO), SrFIJCH3COO) and PbFIJCH3COO)) were solved from X-ray powder diffraction data. The structure solution is backed by the results from 19F MAS NMR, FT IR data, and thermal analysis. The calculated chemical shifts of the 19F MAS NMR spectra coincide well with the measured ones. It turns out that the grinding conditions have a remarkable influence on the mechanochemical synthesis and its products. Our systematic study also indicates a strong influence of the atomic radii of Ca, Sr, Ba, and Pb on the success of the syntheses. KW - Mechanochemistry KW - Coordination polymers PY - 2020 U6 - https://doi.org/10.1039/d0ce00287a VL - 22 IS - 16 SP - 2772 EP - 2780 PB - Royal Society of Chemistry AN - OPUS4-50789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kervarec, M.-C. A1 - Kemnitz, E. A1 - Scholz, G. A1 - Rudic, S. A1 - Jäger, Christian A1 - Braun, T. A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - A HF Loaded Lewis-Acidic Aluminium Chlorofluoride for Hydrofluorination Reactions N2 - The very strong Lewis acid aluminium chlorofluo-ride (ACF) was loaded with anhydrous HF. The interactionbetween the surface of the catalyst and HF was investigatedusing a variety of characterization methods, which revealed he formation of polyfluorides. Moreover, the reactivity ofthe HF-loaded ACF towards the hydrofluorination of alkyneswas studied. KW - Aluminium KW - HF KW - Hydrofluorination KW - Metal fluorides PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508360 VL - 26 SP - 1 PB - Wiley Online Libary AN - OPUS4-50836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Klimakow, Maria A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Fast and efficient synthesis of a host guest system: a mechanochemical approach N2 - An unusually fast and effective synthesis procedure for a host guest system consisting of a metal organic framework (MOF) and a polyoxometalate (POM) is described. The material was synthesised mechanochemically and the evolution of the structure was monitored ex and in situ using synchrotron X-ray diffraction (XRD). KW - Mechanochemistry KW - MOF KW - in situ PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-354910 UR - http://pubs.rsc.org/en/Content/ArticleLanding/2016/CE/C5CE01868D#!divAbstract VL - 18 IS - 7 SP - 1096 EP - 1100 AN - OPUS4-35491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Schlegel, Moritz-Caspar A1 - Schmidt, Wolfram A1 - Nguyen, Thi Yen A1 - Meng, Birgit A1 - Emmerling, Franziska T1 - Time-resolved in situ investigation of Portland cement hydration influenced by chemical admixtures N2 - Numerous admixtures are used in the building practice to customize the properties of the cement paste during application. The influences of admixtures on the course of cement hydration and formation of hydrate phases have to be considered. Polycarboxylate ether (PCE) based polymeric superplasticizers (SPs) are known to retard the setting of the cement paste. The extent of the retardation differs depending on the molecular structure of the SP. Additionally, the presence of a stabilizing agent (SA) in the cement paste has a retarding side effect on the setting. The initial cement hydration processes and the detailed mechanisms of the retardation influenced by PCEs, as well as their interactions with particular SAs, are insufficiently understood. Up to now, only the results of phenomenological studies were taken into account to describe this retardation process. A detailed structure analysis monitoring the change of the phase composition during the hydration was never applied. Both SP and SA affect the adsorption of the sulphate ions on the clinker particles, causing changes in the formation of ettringite during the initial hydration, and are therefore a crucial part of the setting process itself. Here, the initial hydration of cement influenced by the interaction of SP and SA was monitored in situ by synchrotron X-ray diffraction. The high time resolution of the measurements allowed a continuous detection of the hydrates formed. The hydration was followed from the starting point of water addition and for couple of hours afterwards. The hydration of the levitated cement pellets containing starch as SA was initialized by adding aqueous solutions of different commercial SPs. Changes in the ettringite formation were detected in comparison to the reference hydration of pure cement. KW - Synchrotron KW - Portland cement Initial hydration KW - Superplasticizer KW - Stabilizer KW - XRD PY - 2016 U6 - https://doi.org/http://dx.doi.org/10.1016/j.conbuildmat.2015.12.097 IS - 106 SP - 18 EP - 26 PB - Elsevier AN - OPUS4-35467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Heidrich, Adrian A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Polymorphism of mechanochemically synthesized cocrystals: a case study N2 - The liquid-assisted grinding cocrystallisation of theophylline with benzamide leading to polymorphic compounds was investigated. A solvent screening with seventeen different solvents was performed. The dipole moment of the solvent used in the synthesis determines the structure of the polymorphic product. A detailed investigation leads to the determination of the kinetically and thermodynamically favored product. In situ observations of the formation pathway during the grinding process of both polymorphs show that the thermodynamically favored cocrystal is formed in a two-step mechanism with the kinetic cocrystal as intermediate. KW - cocrystal KW - mechanochemistry KW - theophylline KW - benzamide KW - milling KW - polymorphism PY - 2016 U6 - https://doi.org/10.1021/acs.cgd.5b01776 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 3 SP - 1701 EP - 1707 AN - OPUS4-35618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Schmidt, M. U. A1 - Greiser, Sebastian A1 - Emmerling, Franziska T1 - The challenging case of the theophylline–benzamide cocrystal N2 - Theophylline has been used as an active pharmaceutical ingredient (API) in the treatment of pulmonary diseases, but due to its low water solubility reveals very poor bioavailability. Based on its different hydrogen-bond donor and acceptor groups, theophylline is an ideal candidate for the formation of cocrystals. The crystal structure of the 1:1 benzamide cocrystal of theophylline, C7H8N4O2·-C7H7NO, was determined from synchrotron X-ray powder diffraction data. The compound crystallizes in the tetragonal space group P41 with four Independent molecules in the asymmetric unit. The molecules form a hunter’s fence packing. The crystal structure was confirmed by dispersion-corrected DFT calculations. The possibility of salt formation was excluded by the results of Raman and 1H solid-state NMR spectroscopic analyses. KW - powder diffraction KW - theophylline KW - benzamide KW - cocrystal KW - crystal structure KW - active pharmaceutical ingredient KW - dispersion-corrected density-functional theory PY - 2016 U6 - https://doi.org/10.1107/S2053229616002643 SN - 2053-2296 VL - 72 IS - 3 SP - 217 EP - 224 AN - OPUS4-35621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gnutzmann, Tanja A1 - Nguyen, Thi Yen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Solvent-triggered crystallization of polymorphs studied in situ N2 - The crystallization of a highly polymorphic compound was studied in situ by combined time-resolved X-ray diffraction and Raman spectroscopy. Any influences of solid surfaces, temperature, and humidity on the crystallization were omitted by the use of a specially designed acoustic levitator. Investigations of polymorphic phase transitions during the crystallization process in different solvents allowed a structure assignment from first crystalline assemblies to final crystalline form. For the first time, it was possible to yield pure phases of selected polymorphs of the model compound ROY (5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile) directly from solution. The influence of the solvent on the final products and transient phases during the crystallization process was elucidated. KW - Polymorphism KW - Crystallization KW - In situ WAXS KW - In situ Raman spectroscopy KW - ROY PY - 2014 U6 - https://doi.org/10.1021/cg501287v SN - 1528-7483 VL - 14 IS - 12 SP - 6445 EP - 6450 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-32583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbott, A. P. A1 - Abolibda, T. Z. A1 - Davis, S.J. A1 - Emmerling, Franziska A1 - Lourdin, D. A1 - Leroy, E. A1 - Wise, W. R. T1 - Glycol based plasticisers for salt modified starch N2 - Starch is one of the most common and easily obtained natural polymers, making it attractive as a potential bio-based alternative to synthetic polymers. This study shows that a simple quaternary ammonium salt combined with urea or glycols forms effective modifiers that produce flexible plastics with good mechanical properties that are comparable to some polyolefin plastics. The processing conditions are shown to significantly affect the structure of the polymer which has a concomitant effect upon the mechanical and physical properties of the resulting plastic. Using a glycerol based modifier results in a totally sustainable and biodegradable material which can be injection moulded. KW - biodegradable material KW - flexible plastics KW - injection moulded PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351426 SN - 2046-2069 VL - 4 IS - 76 SP - 40421 EP - 40427 PB - RSC Publishing CY - London AN - OPUS4-35142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, Thi Yen A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Direct evidence of polyamorphism in paracetamol N2 - While polymorphism is a common phenomenon in the crystallization processes of organic compounds, polyamorphism has gained importance only recently. Using sophisticated sample environments and applying in situ scattering methods and vibrational spectroscopy, the complete crystallization process of organic compounds from solution can be traced and characterized. Diffuse scattering from amorphous intermediates can be investigated by analyzing the atomic pair distribution function (PDF) to gain further insights into molecular pre-orientation. The crystallization behavior of paracetamol was studied exemplarily under defined, surface-free conditions. Based on the choice of the solvent, the formation of different polymorphs is promoted. The thermodynamically stable form I and the metastable orthorhombic form II could be isolated in pure form directly from solution. For both polymorphs, the crystallization from solution proceeds via a distinct amorphous precursor phase. PDF analyses of these different amorphous states indicate a specific pre-orientation of the analyte molecules introduced by the solvent. The resulting crystalline polymorph is already imprinted in these proto-crystalline precursors. Direct experimental evidence for the polyamorphism of paracetamol is provided. PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351366 SN - 1466-8033 VL - 17 IS - 47 SP - 9029 EP - 9036 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-35136 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351376 SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Steuerung und kontrollierte Bildung polymorpher Molekülkristallphasen T2 - Berichtskolloquium für die zweite Periode SPP 1415 CY - Bad Soden DA - 2015-05-05 PY - 2015 AN - OPUS4-33951 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Gnutzmann, Tanja A1 - Nguyen, Thi Yen A1 - Rademann, K. T1 - SOLVENT TRIGGERED CRYSTALLIZATION OF POLYMORPHS STUDIED IN SITU BY XRD AND RAMAN SPECTROSCOPY T2 - 8th Bologna's Convention on Crystal Forms: Crystals in Food & Pharma 2015 CY - Bologna, Italien DA - 2015-06-14 PY - 2015 AN - OPUS4-33953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Fischer, Franziska A1 - Batzdorf, Lisa A1 - Wilke, Manuel A1 - Wenzel, Klaus-Jürgen T1 - Direct in situ analysis of milling reactions for mechanistic studies using X-ray diffraction combined with Raman spectroscopy T2 - GDCh Wissenschaftsforum CY - Dresden DA - 2015-08-30 PY - 2015 AN - OPUS4-33947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Direct in situ analysis of milling reactions for mechanistic studies using X-ray diffraction combined with Raman spectroscopy T2 - Symposium: Mech´cheM 2015 CY - Montpellier, France DA - 2015-07-15 PY - 2015 AN - OPUS4-33949 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigation of crystallization processes using levitated droplets T2 - Cost Meeting CY - Marseille, France DA - 2015-06-22 PY - 2015 AN - OPUS4-33950 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mönch, Bettina A1 - Kraus, Werner A1 - Köppen, Robert A1 - Emmerling, Franziska T1 - The different conformations and crystal structures of dihydroergocristine N2 - The identification of different forms of dihydroergocristine (DHEC) was carried out by crystallization from different organic solvents. DHEC was identified as potential template for molecularly imprinted polymers (MIPs) for the epimeric specific analysis of ergot alkaloids (EAs) in food. DHEC was crystallized from different solvents in order to mimic the typical MIP synthesis conditions. Four new solvatomorphs of DHEC were obtained. All solvatomorphs contain a water molecule in the crystal structure, whereas three compounds contain an additional solvent molecule. Based on the conformation of DHEC a comparison with typical EA molecules was possible. The analysis showed that DHEC is a suitable template for MIPs for EAs. PY - 2016 U6 - https://doi.org/10.1016/j.molstruc.2015.10.008 SN - 0022-2860 SN - 1872-8014 SN - 0377-046X VL - 1105 SP - 389 EP - 395 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Som, Tirtha A1 - Troppenz, G.V. A1 - Wendt, R. R. A1 - Wollgarten, M. A1 - Rappich, J. A1 - Emmerling, Franziska A1 - Rademann, Klaus T1 - Graphene oxide/alpha-Bi2O3 composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion N2 - The growing challenges of environmental purification by solar photocatalysis, precious-metal-free catalysis, and photocurrent generation in photovoltaic cells receive the utmost global attention. Here we demonstrate a one-pot, green chemical synthesis of a new stable heterostructured, ecofriendly, multifunctional microcomposite that consists of α-Bi2O3 microneedles intercalated with anchored graphene oxide (GO) microsheets (1.0 wt?%) for the above-mentioned applications on a large economical scale. The bare α-Bi2O3 microneedles display two times better photocatalytic activities than commercial TiO2 (Degussa-P25), whereas the GO-hybridized composite exhibits approximately four to six times enhanced photocatalytic activities than the neat TiO2 photocatalyst in the degradation of colored aromatic organic dyes (crystal violet and rhodamine 6G) under visible-light irradiation (300 W tungsten lamp). The highly efficient activity is associated with the strong surface adsorption ability of GO for aromatic dye molecules, the high carrier acceptability, and the efficient electron–hole pair separation in Bi2O3 by individual adjoining GO sheets. The introduction of Ag nanoparticles (2.0 wt?%) further enhances the photocatalytic performance of the composite over eightfold because of a plasmon-induced electron-transfer process from Ag nanoparticles through the GO sheets into the conduction band of Bi2O3. The new composites are also catalytically active and catalyze the reduction of 4-nitrophenol to 4-aminophenol in the presence of borohydride ions. Photoanodes assembled from GO/α-Bi2O3 and Ag/GO/α-Bi2O3 composites display an improved photocurrent response (power conversion efficiency ~20?% higher) over those prepared without GO in dye-sensitized solar cells. KW - Bismuth KW - Dyes/pigments KW - Environmental chemistry KW - Graphene KW - Photochemistry PY - 2014 U6 - https://doi.org/10.1002/cssc.201300990 SN - 1864-5631 SN - 1864-564X VL - 7 IS - 3 SP - 854 EP - 865 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Meng, Birgit A1 - Emmerling, Franziska T1 - Deterioration of hardened cement paste under combined sulphatechloride attack investigated by synchrotron XRD N2 - The exact mechanisms of the phase transitions caused by a combined sulphate-chloride attack are discussed controversially. The main points concern the mutual influences of sulphate and chloride ions during the secondary binding processes of these anions within cement hydrate phases. We simulated combined sulphate-chloride attack under laboratory conditions using solutions containing NaCl and Na2SO4 in different concentrations. Three sample compositions were used for the preparation of the specimens. In two of them, 30% of Portland cement was replaced by supplementary cementitious materials (fly ash, slag). The phase distribution in the samples was determined using synchrotron X-ray diffraction. The analysis with high spatial resolution allows the localisation of the secondary phase formation in the microstructural profile of the sample. A mechanism of the phase developments under combined sulphate-chloride attack is derived. KW - Cement paste KW - Sulphate-chloride attack KW - Portland cement KW - Mineral additions PY - 2016 U6 - https://doi.org/10.1016/j.solidstatesciences.2016.04.002 IS - 56 SP - 29 EP - 44 PB - Elsevier Masson SAS CY - Issy les Moulineaux cedex; France AN - OPUS4-35936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Mechanochemical synthesis, characterization, and structure determination of new alkaline earth metal-tetrafluoroterephthalate frameworks: Ca(pBDC‑F4 )·4H2O, Sr(pBDC‑F4 )·4H2O, and Ba(pBDC‑F4 ) N2 - New fluorinated alkaline earth metal−organic frameworks were successfully synthesized by milling of metal hydroxides M(OH)2 with tetrafluoroterephthalic acid H2 pBDC-F4. Both calcium- and strontium-tetrafluoroterephthalates are tetrahydrated, while the barium tetrafluoroterephthalate is free of coordinating water molecules. The two isomorphic structures Ca(pBDC-F4)·4H2O and Sr(pBDC-F4)·4H2O were solved from the powder diffraction data by ab initio structure determination and subsequent Rietveld refinement. The products were thoroughly characterized by elemental analysis, thermal analysis, magicangle spinning NMR, Fourier transform infrared spectroscopy, scanning electron microscopy imaging, and Brunauer−Emmett−Teller measurements. Our findings suggest that the mechanochemical synthesis route is a promising approach for the preparation of new fluorinated alkaline earth metal−organic frameworks. KW - Mechanochemistry KW - MOFs KW - XRD PY - 2016 UR - http://pubs.acs.org/doi/abs/10.1021/acs.cgd.5b01457 U6 - https://doi.org/10.1021/acs.cgd.5b01457 SN - 1528-7483 VL - 16/4 SP - 1923 EP - 1933 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-35940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Kraus, Werner A1 - Bischoff, F. A. A1 - Emmerling, Franziska A1 - Resch-Genger, Ute A1 - Tschiche, Harald T1 - Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes N2 - We report on the temperature- and structural-dependent optical properties and photophysics of a set of boron dipyrromethene (BODIPY) dyes with different substitution patterns of their meso-aryl subunit. Single-crystal Xray diffraction analysis of the compounds enabled a classification of the dyes into a sterically hindered and a unhindered group. The steric hindrance refers to a blocked rotational motion of the aryl subunit around the bond connecting this moiety to the meso-position of the BODIPY core. The energy barriers related to this rotation were simulated by DFT calculations. As follows from the relatively low rotational barrier calculated to about 17 kcal/mol, a free rotation is only possible for sterically unhindered compounds. Rotational barriers of more than 40 kcal/mol determined for the sterically hindered compounds suggest an effective freezing of the rotational motion in These molecules. With the aid of temperature-dependent spectroscopic measurements, we could show that the ability to rotate directly affects the optical properties of our set of BODIPY dyes. This accounts for the strong temperature dependence of the fluorescence of the sterically unhindered compounds which show a drastic decrease in fluorescence quantum yield and a significant shortening in fluorescence lifetime upon heating. The optical properties of the sterically hindered compounds, however, are barely affected by temperature. Our results suggest a nonradiative deactivation of the first excited singlet state of the sterically unhindered compounds caused by a conical intersection of the potential energy surfaces of the Ground and first excited state which is accessible by rotation of the meso-subunit. This is in good agreement with previously reported deactivation mechanisms. In addition, our results suggest the presence of a second nonradiative depopulation pathway of the first excited singlet state which is particularly relevant for the sterically hindered compounds. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - BODIPY KW - Dye KW - Probe KW - Synthesis KW - Photophysics KW - Mechanism PY - 2020 U6 - https://doi.org/10.1021/acs.jpca.9b11859 SN - 1089-5639 VL - 124 IS - 9 SP - 1787 EP - 1797 PB - American Chemical Society AN - OPUS4-50639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Ein Blick in die Welt der Mechanochemie N2 - Perhaps due in no small part to its historical mystique, mechanochemistry has been shrowded in relative obscurity for quite some time. The successes of mechanochemistry in organic synthesis have often been curtailed by a fundamentally limited mechanistic understanding. Lately, however, the community has made great strides towards understanding the fundamentals, as well as large steps forward regarding industrially significant scale-up via twin-screw extrusion. A variety of recent work has traded in some of mechanochemistry’s mystique for simple, straight-forward chemical guidelines. T2 - Seminar Anorganische Chemie Universität Kiel CY - Kiel, Germany DA - 22.10.19 KW - Mechanochemistry KW - XRD PY - 2019 AN - OPUS4-50134 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken or levitated? A time resolved perspective on unconventional crystallization N2 - This Outlook provides a brief overview of the recent achievements and opportunities created by acoustic levitation and mechanochemistry, including access to materials, molecular targets, and synthetic strategies that are difficult to access by conventional means. T2 - Vortragsreihe Analytik Merck CY - Darmstadt, Germany DA - 18.11.19 KW - Levitation KW - Acoustic levitation KW - X-ray and electron diffraction PY - 2019 AN - OPUS4-50135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the force be with you - in situ investigation of mechanochemical reactions N2 - The past decade has seen a reawakening of solid-state to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry has advanced to a widely applicable technique. T2 - SALSA's "Make and Measure 2019 CY - Berlin, Germany DA - 25.10.2019 KW - Mechanochemistry KW - Metal–organic frameworks PY - 2019 AN - OPUS4-50138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Jagorel, Noëmie A1 - Reinsch, Stefan T1 - Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects N2 - Metal-organic frameworks (MOFs) are promising nanoporous materials with many practical applications. This owes largely to their remarkable porosity and the presence of specific chemical functionalities, such as exposed metal sites (EMS). The MOF-74 structure is known for exhibiting one of the highest EMS densities among porous materials. Moreover, the inclusion of structural defects has been proposed to enhance activity further. This was previously achieved by mixing the original linker together with a second one, having lower topology. The presence of structural defects was evidenced by the resulting crystalline properties and thermal stability. In this work, different mixtures of tetratopic 2,5-dihydroxyterephthalic acid with up to 60% of the tritopic hydroxyterephtalic acid were used to synthesize crystalline Co-MOF-74-like materials. Materials synthesized from higher proportions than 30% of hydroxyterephtalic acid in the synthesis media collapse upon partial removal of the solvent molecules. This indicates the presence of structural defects and the importance of the solvent molecules in stabilizing the crystalline structures. Electron microscope images show that crystal size reduces with inclusion of hydroxyterephtalic acid as the second linker. The presence of coordinated solvent molecules at the EMS was evaluated by Fourier-transform infrared spectra (FTIR) spectroscopy, so that a higher degree of solvent-exchange was observed during washing for defective structures. Furthermore, TG analysis suggests defective structures exhibit lower desolvation temperatures than the defect-free structures. Finally, N2 adsorption-desorption analyses at −196°C showed an enhanced accessibility of the gas to the inner porosity of the defective structures and therefore, the EMS of the material. All these finding make this pathway interesting to enhance the potential interest of these materials for an industrial application because of both a facilitated activation and a better access to the active sites. KW - MOF-74 KW - Structural defects KW - Mixed-linkers KW - Exposed metal sites KW - Facilitated activation PY - 2019 U6 - https://doi.org/10.3389/fmats.2019.00230 VL - 6 SP - 230 PB - Frontiers Media CY - Lausanne AN - OPUS4-49256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Villajos Collado, José Antonio A1 - Myxa, Anett A1 - Beyer, Sebastian A1 - Falkenhagen, Jana A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Covalently Fluorophore-Functionalized ZIF‑8 Colloidal Particles as a Sensing Platform for Endocrine-Disrupting Chemicals Such as Phthalates Plasticizers N2 - We present the optical sensing of phthalate Esters (PAEs), a group of endocrine-disrupting chemicals. The sensing takes place as changes in the fluorescence emission intensity of aminopyrene covalently bound to the organic ligands of the metal−organic framework compound ZIF-8. In the presence of PAEs, a quenching of the fluorescence emission is observed. We evaluated strategies to engineer colloidal size distribution of the sensing particles to optimize the sensory response to PAEs. A thorough characterization of the modified ZIF-8 nanoparticles included powder X-ray diffractometry, transmission electron microscopy, high-performance liquid chromatography, and photophysical characterization. The presented capability of the fluorophore-functionalized ZIF-8 to sense PAEs complements established methods such as chromatography-based procedures, which cannot be used on-site and paves the way for future developments such as hand-held quick sensing devices. KW - Sensing KW - MOF PY - 2019 U6 - https://doi.org/10.1021/acsomega.9b01051 VL - 4 IS - 17 SP - 17090 EP - 17097 PB - ACS AN - OPUS4-49562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemistrry - a time resolved perspective on unconventional crystallization N2 - Green chemsistry apporoach for the synthesis of metal organic frameworks. T2 - IFW BAM Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Mechanochemistry KW - XRD KW - Metal-organic-frameworks PY - 2019 AN - OPUS4-50110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504755 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burek, K. A1 - Dengler, J. A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, M. U. A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high-quality cementbased construction material. Complementary experiments of Xray diffraction analysis (XRD), scanning electron microscopy (SEM) and time-resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We Show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time-dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium-silicate-hydrates (C-S-H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C-S-H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - Cement admixtures KW - Cement hydration KW - Europium KW - Luminescence KW - SEM KW - X-ray diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504842 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH AN - OPUS4-50484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobina, E. A1 - Zimathies, Annett A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - de Santis Neves, R. A1 - Wang, H. A1 - Mizuno, K. A1 - Devoille, L. A1 - Steel, E. A1 - Ceyhan, A. A1 - Sadak, E. ED - Sobina, E. T1 - Final report of CCQM-K153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) N2 - CCQM key comparison K-153 Measurement of Specific Adsorption A [mol/kg] of N-2 and Kr on nonporous SiO2 at LN temperature (to enable a traceable determination of the Specific Surface Area (BET) following ISO 9277) has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area) of nonporous substances (sorbents, ceramics, catalytic agents, etc) used in advanced technology. In this key comparison, a commercial nonporous silicon dioxide was supplied as a sample. Eight NMIs participated in this key comparison, but only five NMI's have reported in time. All participants used a gas adsorption method, here nitrogen and (or) krypton adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption nitrogen and krypton, BET specific surface area were established. KW - Nonporous SiO2 KW - Specific Adsorption of N-2 and Kr KW - BET specific surface area PY - 2019 U6 - https://doi.org/10.1088/0026-1394/56/1A/08013 VL - 56 IS - 1A SP - 08013 PB - IOP publishing Ltd CY - Bristol, UK AN - OPUS4-50358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Becker, C. A1 - Michalchuk, Adam A1 - Linberg, Kevin A1 - Paulus, B. A1 - Emmerling, Franziska T1 - Tuning the Apparent Stability of Polymorphic Cocrystals through Mechanochemistry N2 - Mechanochemistry has become a valuable method for the synthesis of new materials and molecules, with a particular strength for screening and preparing multicomponent crystals. In this work, two novel cocrystals of pyrazinamide (PZA) with pimelic acid (PA) were prepared mechanochemically. Their formation was monitored in real time by in situ synchrotron powder X-ray diffraction. Control over the polymorphic form was obtained through the selective choice of liquid additive via liquid assisted grinding. Slurry experiments and dispersion-corrected density functional theory calculations suggest that Form I is the thermodynamically stable form under ambient conditions. Upon aging, Form II converts to Form I. The stability of Form II upon aging was found to depend strongly on the milling duration, intensity, and material of the milling vessels. Longer or higher energy milling drastically increased the lifetime of the Form II product. For the first time, this work also demonstrates that the choice of milling jar can have a decisive effect on the aging stability of a bulk polymorphic powder. In contrast to material prepared in steel milling vessels, the preparation of Form II in Perspex (PMMA) vessels increased its lifetime 3-fold. These findings offer a new dimension to garnering control over mechanochemical cocrystallization and demonstrate the critical importance of the careful and timely ex situ screening of ball mill grinding reactions. This will be of importance for potential industrial applications of mechanochemical cocrystallization where understanding polymorph longevity is crucial for the development of a robust preparative protocol. KW - Physical and chemical processes KW - Organic compounds KW - Liquids KW - Materials KW - Stability PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.9b01158 VL - 19 IS - 12 SP - 7271 EP - 7279 PB - ACS Publications AN - OPUS4-50281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507640 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507531 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Ali, Naveed Zafar A1 - Etter, M. A1 - Michalchuk, Adam A1 - Rademann, K. A1 - Emmerling, Franziska T1 - A Comparative Study of the Ionic Cocrystals NaX (α-d-Glucose)2 (X = Cl, Br, I) N2 - The mechanochemical formation of the ionic cocrystals of glucose (Glc) and sodium salts Glc2NaCl·H2O (1) and Glc2NaX (X = Br (2), I (3)) is presented. Products are formed by co-milling Glc with three sodium salts (NaCl, NaBr, NaI). The ionic cocrystals were obtained under both neat grinding and liquid-assisted grinding conditions, the later found to accelerate the reaction kinetics. The crystal structures of the ionic cocrystals (2) and (3) were solved from powder X-ray diffraction data. The structure solution contrasts with the structure of Glc2NaCl·H2O (1) where the electron density at three halide crystallographic sites is modeled as of being the intermediate between water molecule and a chloride ion. The reaction pathways of the three ionic cocrystals were investigated in real time using our tandem approach comprising a combination of in situ synchrotron powder X-ray diffraction and Raman spectroscopy. The results indicate the rapid formation of each cocrystal directly from their respective starting materials without any intermediate moiety formation. The products were further characterized by DTA-TG and elemental analysis. KW - In situ KW - Co-crystal KW - Mechanochemistry KW - Glucose PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.8b01929 VL - 19 IS - 8 SP - 4293 EP - 4299 PB - ACS Publications AN - OPUS4-48781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Stock, Norbert A1 - Tadei, Marco A1 - Demel, Jan A1 - Cabeza, Aurelio A1 - Viviani, Riccardo A1 - Demadis, Konstantinos A1 - Vassaki, Maria T1 - New directions in metal phosphonate and phosphinate chemistry N2 - In September 2018, the First European Workshop on Metal Phosphonates Chemistry brought together some prominent researchers in the field of metal phosphonates and phosphinates with the aim of discussing past and current research efforts and identifying future directions. The scope of this perspective article is to provide a critical overview of the topics discussed during the workshop, which are divided into two main areas: synthesis and characterisation, and applications. In terms of synthetic methods, there has been a push towards cleaner and more efficient approaches. This has led to the introduction of high-throughput synthesis and mechanochemical synthesis. The recent success of metal–organic frameworks has also promoted renewed interest in the synthesis of porous metal phosphonates and phosphinates. Regarding characterisation, the main advances are the development of electron diffraction as a tool for crystal structure determination and the deployment of in situ characterisation techniques, which have allowed for a better understanding of reaction pathways. In terms of applications, metal phosphonates have been found to be suitable materials for several purposes: they have been employed as heterogeneous catalysts for the synthesis of fine chemicals, as solid sorbents for gas separation, notably CO2 capture, as materials for electrochemical devices, such as fuel cells and rechargeable batteries, and as matrices for drug delivery. KW - Metal phosphonates KW - Metal–organic frameworks KW - X-ray and electron diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-484346 SN - 2073-4352 VL - 9 IS - 5 SP - 270, 1 EP - 36 PB - MDPI AN - OPUS4-48434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Feiler, Torvid A1 - Ali, N. Z. A1 - Minas da Piedade, M. E. A1 - Emmerling, Franziska T1 - Mechanistic Insights into a Sustainable Mechanochemical Synthesis of Ettringite N2 - Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials. KW - Ettringite KW - Mechanochemistry KW - Sustainability KW - X-ray diffraction PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489172 VL - 8 IS - 7 SP - 1012 EP - 1019 PB - ChemPubSoc AN - OPUS4-48917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d U6 - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - How to write your thesis N2 - Useful tips & tricks to overcome procrastination and get you PhD thesis written. T2 - 13. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 19.03.2019 KW - Outreach KW - Pomodore KW - Deep work PY - 2019 AN - OPUS4-48097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Prinz, Carsten A1 - Scholz, Gudrun A1 - Kemnitz, Erhard A1 - Emmerling, Franziska T1 - Ca-, Sr-, and Ba-Coordination polymers based on anthranilic acid via mechanochemistry N2 - Ca-, Sr-, and Ba-Based coordination polymers (CPs) were prepared mechanochemically by milling metal-hydroxide samples with anthranilic acid (oABAH). {[Ca(oABA)2(H2O)3]}n consists of one-dimensional polymeric chains that are further connected by a hydrogen-bonding network. {[Sr(oABA)2(H2O)2]·H2O}n is a one-dimensional CP in which water molecules bridge Sr2+ ions and increase the dimensionality by building an extended network. {[Ba(oABA)2(H2O)]}n crystallizes as a two-dimensional CP comprising one bridging water molecule. The cation radii influence the inorganic connectivity and dimensionality of the resulting crystal structures. The crystal structures were refined from powder X-ray diffraction data using the Rietveld method. The local coordination environments were studied via extended X-ray absorption fine structure (EXAFS) measurements. The compounds were further characterized using comprehensive analytical methods such as elemental analysis, thermal analysis, MAS NMR, imaging, and dynamic vapor sorption (DVS) measurements. Compounds 1, 2, and 3 exhibit small surface areas which decrease further after thermal annealing experiments. All compounds exhibit a phase transformation upon heating, which is only reversible in 3. KW - Mechanochemistry KW - XRD PY - 2019 U6 - https://doi.org/10.1039/c9dt00991d SN - 1477-9226 SN - 1477-9234 VL - 48 IS - 19 SP - 6513 EP - 6521 PB - Royal Society of Chemistry AN - OPUS4-48014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - Early stage in situ detection of polynuclear aluminum phases in aqueous solution N2 - Polynuclear cationic aluminum hydroxide phases are known intermediates in the formation of aluminum oxides or (oxide) ydroxides upon hydrolysis of aluminum salt solutions. In the presence of sulfate anions, these aluminum polyoxocations (Al13) can form crystalline Al13 sulfates with varying chemical composition. The formation of these Al13 sulfates in aqueous solution has been poorly understood. Here, we investigate the early stage crystallization of Al13 clusters in a sulfate-containing solution, in situ and in real time. Dynamics associated with Al13 sulfate formation have been obtained for the first time, using Synchrotron X-ray diffraction (XRD) of solutions suspended by acoustic levitation. Time-resolved in situ data show that the cubic phase, Na [(AlO4)Al12(OH)24(H2O)12](SO4)4*10H2O, forms after only minutes. The Formation mechanism of Al13 sulfates was found to depend on the sulfate:aluminum (SO4:Al) ratio. Ex situ XRD of the product Al13 sulfates in solution shows that for SO4:Al ratio ≤ 1.5 two other crystalline phases form, and convert to the cubic phase upon washing and drying. In situ XRD for the same ratio shows transient formation of an intermediate during the crystallization process. KW - Polyoxocation KW - In situ KW - Crystallization KW - Acoustic levitation KW - Synchroton x-ray diffraction PY - 2019 U6 - https://doi.org/10.1016/j.poly.2019.05.049 VL - 170 SP - 639 EP - 648 PB - Elsevier Ltd. AN - OPUS4-48552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Foschung an der BAM - Von Termiten bis zum 3D Druck in der Schwerelosigkeit N2 - Eine Übersicht über die Forschung an der BAM mit Schwerpunkt auf dem Fachbereich Strukturanalytik T2 - Naturwissenschaftstag in Senftenberg CY - Senftenberg, Germany DA - 14.06.19 KW - Mechanochemie KW - XRD PY - 2019 AN - OPUS4-48393 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O–H···N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C–H···O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both π···π and C–H···π interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization. KW - Cocrystal KW - Mechanochemical synthesis KW - Luminescence KW - X-ray diffraction KW - DFT calculation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518226 VL - 10 IS - 10 SP - 889 PB - MDPI AN - OPUS4-51822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, A. A1 - Vasilev, N. A1 - Voronin, A. A1 - Churakov, A. A1 - Emmerling, Franziska A1 - Perlovich, G. T1 - Ciprofloxacin salts with benzoic acid derivatives: structural aspects, solid-state properties and solubility performance N2 - n this work, three new pharmaceutical hydrated salts of ciprofloxacin with selected derivatives of benzoic acid, namely 4-hydroxybenzoic acid, 4-aminobenzoic acid and gallic acid, were obtained and systematically investigated by several solid-state analytical techniques. In situ Raman spectroscopy was applied to elucidate the alternative pathways of the solid forms' formation under mechanochemical conditions. Crystal structure analysis and a CSD survey allowed us to establish a distinct supramolecular motif formed by infinite columnar stacks of ciprofloxacin dimers arranged in the “head-to-tail” manner. An alternative “head-to-head” packing arrangement was only observed in the crystal of the hydrated ciprofloxacin salt with 4-aminobenzoic acid. In addition, the pH-solubility behavior of the solid forms was thoroughly investigated. Furthermore, a distinct structure–property relationship between the specific features of the supramolecular organization of the hydrated salts and their solubility was observed and discussed. KW - Mechanochemistry KW - XRD PY - 2020 U6 - https://doi.org/10.1039/D0CE00514B VL - 22 IS - 25 SP - 4238 EP - 4249 AN - OPUS4-51818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Asta, M. A1 - Fernandez-Martinez, A. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Monitoring a Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. In nature, it serves as a storage material or as a permanent structural element, whose lifetime is regulated by an organic matrix. The relevance of ACC in materials science is primarily related to our understanding of CaCO3 crystallization pathways and CaCO3/(bio)polymer nanocomposites. ACC can be synthesized by liquid–liquid phase separation, and it is typically stabilized with macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. Phosphate “impurities” were added in the form of monetite (CaHPO4) to substitute the carbonate anions, thereby stabilizing ACC by substitutional disorder. The phosphate anions do not simply replace the carbonate anions. They undergo shear-driven acid/base and condensation reactions, where stoichiometric (10%) phosphate contents are required for the amorphization to be complete. The phosphate anions generate a strained network that hinders ACC recrystallization kinetically. The amorphization reaction and the structure of BM-ACC were studied by quantitative Fourier transform infrared spectroscopy and solid state 31P, 13C, and 1H magic angle spinning nuclear magnetic resonance spectroscopy, which are highly sensitive to symmetry changes of the local environment. In the first—and fast—reaction step, the CO32– anions are protonated by the HPO42– groups. The formation of unprecedented hydrogen carbonate (HCO3–) and orthophosphate anions appears to be the driving force of the reaction, because the phosphate group has a higher Coulomb energy and the tetrahedral PO43– unit can fill space more efficiently. In a competing second—and slow—reaction step, pyrophosphate anions are formed in a condensation reaction. No pyrophosphates are formed at higher carbonate contents. High strain leads to such a large energy barrier that any reaction is suppressed. Our findings aid in the understanding of the mechanochemical amorphization of calcium carbonate and emphasize the effect of impurities for the stabilization of the amorphous phases in general. Our approach allowed the synthesis of new amorphous alkaline earth defect variants containing the unique HCO3– anion. Our approach outlines a general strategy to obtain new amorphous solids for a variety of carbonate/phosphate systems that offer promise as biomaterials for bone regeneration. KW - Crystallization KW - Mechanochemistry KW - PDF PY - 2020 U6 - https://doi.org/10.1021/acs.cgd.0c00912 VL - 20 IS - 10 SP - 6831 EP - 6846 PB - American Chemical Society AN - OPUS4-51819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kulow, Anicó A1 - Kabelitz, Anke A1 - Grunewald, C. A1 - Seidel, R. A1 - Chapartegui-Arias, Ander A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Beyer, S. T1 - Observation of early ZIF-8 crystallization stages with X-ray absorption spectroscopy N2 - The present study investigates early stages of ZIF-8 crystallization up to 5 minutes post mixing of precursor solutions. Dispersive X-ray Absorption Spectroscopy (DXAS) provides a refined understanding of the evolution of the coordination environment during ZIF-8 crystallization. Linear Combination Fiting (LCF) suggests tetrakis(1-methylimidazole)zinc2+ to be a suitable and stable mononuclear structure analogue for some early stage ZIF-8 intermediates. Our results pave the way for more detailed studies on physico-chemical aspects of ZIF-8 crystallization to better control tailoring ZIF-8 materials for specific applications. KW - In-situ KW - XANES KW - ZIF-8 KW - Crystallization PY - 2020 U6 - https://doi.org/10.1039/D0SM01356K SN - 1744-6848 VL - 17 IS - 2 SP - 331 EP - 334 PB - Royal Scociety of Chemistry AN - OPUS4-51723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - Marquardt, Julien A1 - Feiler, Torvid A1 - Prinz, Carsten A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles N2 - Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis. KW - Mechanochemistry KW - Metal nanoparicels PY - 2020 U6 - https://doi.org/10.1039/d0ce00826e VL - 22 IS - 38 SP - 6261 EP - 6267 PB - Royal Society of Chemistry AN - OPUS4-51757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Olivera, Paulo A1 - Michalchuk, Adam A1 - de Oliveira Guilherme Buzanich, Ana A1 - Bienert, Ralf A1 - Torresi, R. A1 - Camargo, P. A1 - Emmerling, Franziska T1 - Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis N2 - Current time-resolved in situ approaches limit the scope of mechanochemical investigations possible. Here we develop a new, general approach to simultaneously follow the evolution of bulk atomic and electronic structure during a mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based X-ray methods: X-ray absorption spectroscopy (XAS) and X-ray diffraction. We apply this method to investigate the bottom-up mechanosynthesis of technologically important Au micro and nanoparticles in the presence of three different reducing agents, hydroquinone, sodium citrate, and NaBH4. Moreover, we show how XAS offers new insight into the early stage generation of growth species (e.g. monomers and clusters), which lead to the subsequent formation of nanoparticles. These processes are beyond the detection capabilities of diffraction methods. This combined X-ray approach paves the way to new directions in mechanochemical research of advanced electronic materials. KW - Mechanochemistry KW - XANES KW - X-ray diffraction KW - Nano particles PY - 2020 U6 - https://doi.org/10.1039/d0cc03862h SN - 1364-548X VL - 56 SP - 10329 EP - 10332 PB - Royal Society of Chemistry AN - OPUS4-51760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Opitz, P. A1 - Besch, L. A1 - Panthöfer, M. A1 - Kabelitz, Anke A1 - Unger, R. A1 - Emmerling, Franziska A1 - Mondeshki, M. A1 - Tremel, W. T1 - Insights into the In Vitro Formation of Apatite from Mg‐Stabilized Amorphous Calcium Carbonate N2 - A protein‐free formation of bone‐like apatite from amorphous precursors through ball‐milling is reported. Mg2+ ions are crucial to achieve full amorphization of CaCO3. Mg2+ incorporation generates defects which strongly retard a recrystallization of ball‐milled Mg‐doped amorphous calcium carbonate (BM‐aMCC), which promotes the growth of osteoblastic and endothelial cells in simulated body fluid and has no effect on endothelial cell gene expression. Ex situ snapshots of the processes revealed the reaction mechanisms. For low Mg contents (<30%) a two phase system consisting of Mg‐doped amorphous calcium carbonate (ACC) and calcite “impurities” was formed. For high (>40%) Mg2+ contents, BM‐aMCC follows a different crystallization path via magnesian calcite and monohydrocalcite to aragonite. While pure ACC crystallizes rapidly to calcite in aqueous media, Mg‐doped ACC forms in the presence of phosphate ions bone‐like hydroxycarbonate apatite (dahllite), a carbonate apatite with carbonate substitution in both type A (OH−) and type B (PO43−) sites, which grows on calcite “impurities” via heterogeneous nucleation. This process produces an endotoxin‐free material and makes BM‐aMCC an excellent “ion storage buffer” that promotes cell growth by stimulating cell viability and metabolism with promising applications in the treatment of bone defects and bone degenerative diseases. KW - Total Scattering KW - XRD KW - Mechanochemistry PY - 2020 U6 - https://doi.org/10.1002/adfm.202007830 VL - 31 IS - 3 SP - 7830 PB - Wiley VHC-Verlag AN - OPUS4-51761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulow, Anicó A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Emmerling, Franziska A1 - Hampel, S. A1 - Fittschen, U.E.A. A1 - Streli, C. A1 - Radtke, Martin T1 - Comparison of three reconstruction methods based on deconvolution, iterative algorithm and neural network for X-ray fluorescence imaging with coded apertures N2 - X-ray imaging methods are used in many fields of research, as they allow a non-destructive Investigation of the elemental content of various samples. As for every imaging method, for X-ray imaging the optics are of crucial importance. However, these optics can be very expensive and laborious to build, as the requirements on surface roughness and precision are extremely high. Angles of reflection and refraction are often in the range of a few mrad, making a compact design hard to achieve. In this work we present a possibility to simplify X-ray imaging. We have adapted the coded aperture method, a high energy radiation imaging method that has its origins in astrophysics, to full field X-ray fluorescence imaging. In coded aperture imaging, an object is projected through a known mask, the coded aperture, onto an area sensitive detector. The resulting image consists of overlapping projections of the object and a reconstruction step is necessary to obtain the information from the recorded image. We recorded fluorescence images of different samples with an energy-dispersive 2D detector (pnCCD) and investigated different reconstruction methods. With a small coded aperture with 12 holes we could significantly increase the count rate compared to measurements with a straight polycapillary optic. We show that the reconstruction of two different samples is possible with a deconvolution approach, an iterative algorithm and a neural network. These results demonstrate that X-ray fluorescence imaging with coded apertures has the potential to deliver good results without scanning and with an improved count rate, so that measurement times can be shortened compared to established methods. KW - X-ray fluorescence imaging KW - Coded apertures KW - Imaging KW - Elemental mapping KW - Image reconstruction PY - 2020 U6 - https://doi.org/10.1039/d0ja00146e VL - 35 IS - 7 SP - 1423 EP - 1434 PB - Royal Society of Chemistry CY - United Kingdom AN - OPUS4-51518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 U6 - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kumari, N. A1 - Bhattacharya, Biswajit A1 - Roy, P. A1 - Michalchuk, Adam A1 - Ghosh, A. A1 - Emmerling, Franziska T1 - Enhancing the Pharmaceutical Properties of Pirfenidone by Mechanochemical Cocrystallization N2 - Pirfenidone is an important drug molecule used in the treatment of idiopathic lung fibrosis. Although approved by the USFDA in 2014, pirfenidone’s aqueous solubility is too high and must be mitigated by additives. In this work, the cocrystallization of pirfenidone is explored as an alternative approach to reducing its solubility. Herein, an anhydrous form of pirfenidone is reported, alongside its first two reported cocrystals. The new crystalline solids are thoroughly characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction analysis (PXRD), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Equilibrium solubility and intrinsic dissolution rates (IDR) are studied for the cocrystals and compared to that of the parent drug. Both cocrystal forms exhibit drastically lower aqueous solubility (by up to 90%) and dissolution rates, rationalized based on both lattice energy calculations and consideration of intermolecular interactions in the solid state. Furthermore, we compare the physicochemical properties of solution-based material with that of material produced mechanochemically. Importantly, no differences are observed between the two production methods. This work demonstrates the strength of crystal Engineering strategies to beneficially modify important pharmaceutical properties and highlights the potential of mechanochemistry to facilitate this in an environmentally benign way. KW - Mechanochemistry PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.9b00932 VL - 19 IS - 11 SP - 6482 EP - 6492 PB - ACS Publications AN - OPUS4-49828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Revealing Mechanical Plastic Bending in Coordination Polymer Crystals N2 - Crystalline molecular materials with mechanical flexibility are promising for technological development. This is particularly true for the development of advanced materials with optoelectronic and biomedical applications. While a growing number of mechanically flexible crystalline molecular materials are being reported,1 they remain scarce. At present, most discoveries are serendipitous, as limited design strategies are currently known. Amongst these strategies Desiraju et. al. suggested that elastic materials must contain herringbone structures.2 For plastic crystals, the so-called ‘shape-synthon’ strategy has been developed, in which weak non-covalent interactions are introduced into structures to facilitate mobility of molecules.3 This includes formation of slip planes. Generally, these models have performed very well at predicting and rationalizing the mechanical properties of new materials. Recently, however, a family of one-dimensional covalent networks (coordination polymers; CPs) has been described, which show mechanical elasticity. With drastically different structural chemistry, these systems do not seem to adhere to the currently established rules. Herein, we present the first such system: a plastically bendable crystal of a 1D CP, [Zn(-Cl)2(3,5-Cl2Py)2]n (where 3,5-Cl2Py = 3,5-dichloro pyridine). This CP crystallizes in a tetragonal, and can therefore be bent over two major faces to acute angles without fracturing. We conducted bending and indentation experiments to quantify the mechanical properties of the CP crystal. This was complimented by Vibrational (Raman and Terahertz) spectroscopy and theoretical calculations for deeper understanding of molecular level structural deformation. T2 - 32nd European Crystallographic Meeting (ECM32) CY - University of Vienna, Vienna, Austria DA - 18.08.2019 KW - Mechanical Flexiblity KW - Crystal engineering KW - Coordination Polymers PY - 2019 AN - OPUS4-49875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, H. A1 - Rademann, K. T1 - Insights into mechanochemical Knoevenagel condensations N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there is a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of of our approach is shown for diffrent model reactions. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation PY - 2019 AN - OPUS4-49694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chewle, Surahit A1 - Emmerling, Franziska A1 - Weber, M. T1 - Effect of choice of solvent on crystallization pathway of paracetamol: An experimental and theoretical case study N2 - The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs KW - Crystallization KW - Nucleation KW - Polymorphism KW - Raman spectroscopy KW - Cassical nucleation theory PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520052 SN - 2073-4352 VL - 10 IS - 12 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-52005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simões, R. G. A1 - Melo, P. L. T. A1 - Bernardes, C. E. S. A1 - Heilmann, Maria A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Linking Aggregation in Solution, Solvation, and Solubility of Simvastatin: An Experimental and MD Simulation Study N2 - The solubility is generally thought to be higher if the solvent effectively solvates solute molecules that are well-separated from each other. The present work suggests, however, that the formation of large solute aggregates does not necessarily imply less effective solvation and lower solubility. Measurements of the solubility of simvastatin (one of the most commonly prescribed antihyperlipidemic drugs) in three solvents with different polarities and protic characters, led to the solubility order acetone > ethyl acetate > ethanol, in the full temperature range covered by the experiments (283–308 K). An analysis of the structures of the different solutions on the basis of molecular dynamics simulation results indicated that this trend seems to be determined by a balance between the solute tendency toward aggregation and the ability of the solvent to efficiently solvate it, by integrating the cluster structures, regardless of their size, and effectively establishing solvent–solute interactions. KW - Simvastatin KW - Solubility KW - API KW - Aggregation PY - 2021 U6 - https://doi.org/10.1021/acs.cgd.0c01325 VL - 21 IS - 1 SP - 544 EP - 551 AN - OPUS4-52185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Boldyreva, E. A1 - Belenguer, A. M. A1 - Emmerling, Franziska A1 - Boldyrev, V. V. T1 - Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? N2 - Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemistry community. KW - Mechanochemistry KW - Tribochemistry KW - Mechanical alloying KW - Tribology KW - Mechanical activation KW - Nomenclature KW - Mechanochemical pictographs PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523291 SN - 2296-2646 VL - 9 SP - 1 EP - 29 PB - Frontiers Media CY - Lausanne AN - OPUS4-52329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524041 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia A1 - Emmerling, Franziska ED - Plank, J. ED - Lei, L. T1 - Direct insight into the admixture activity during cement hydration using levitated droplets N2 - Chemical admixtures are widely used to adjust properties of the cementitious mixtures. Different superplasticizers (SP) are typically added to improve the flowability of the fresh cement paste. Their working period is the initial stage of the cement hydration from its beginning until stiffening. Currently, polycarboxylate-based SP (PCE-SP) are the most effective ones. They can act beyond their aimed function causing changes in the hydration course, e. g. retardation effects. The exact mechanisms and influencing factors are still under investigation. However, the occurrence of the retardation effect indicates the involvement of PCE in the hydration reactions. Some observations indicate, that the retardation depends on the type, molecular structure and concentration of PCE, and the presence of other admixtures (stabiliser, ST). These factors influence further the working time of admixture and its amount related efficacy in the flow improvement. We investigate the cement hydration process in situ in levitated droplets. High resolution synchrotron X-ray diffraction allows gathering temporal course of the hydration reactions. The measurement setup is based on an ultrasonic levitator allowing in situ investigation of the temporal changes of the phase composition in the hydrating cementitious system. Further, the hydration can be followed ab initio avoiding the time loss for the sample preparation and filling in the sample holder. The collected data allows to conclude about the mechanisms of the admixture action and their involvement into the ongoing hydration process. T2 - 2nd International Conference on Polycarboxylate Superplasticizers (PCE 2017) CY - München, Germany DA - 28.09.2017 KW - Portland cement KW - Initial hydration KW - Acoustic levitator KW - Admixtures KW - Time resolution PY - 2017 SN - 978-3-9816240-6-9 SP - 185 EP - 193 AN - OPUS4-43167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraffert, K. A1 - Kabelitz, Anke A1 - Siemensmeyer, K. A1 - Schmack, R. A1 - Bernsmeier, D. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nanocasting of superparamagnetic iron oxide films with ordered mesoporosity N2 - Maghemite and magnetite show superparamagnetic behavior when synthesized in a nanostructured form. The material’s inducible magnetization enables applications ranging from contrast enhancing agents for magnetic resonance imaging to drug delivery systems, magnetic hyperthermia, and separation. Superparamagnetic iron oxides with templated porosity have been synthesized so far only in the form of hard-templated powders, where silicon retained from the template severely degrades the material’s magnetic properties. Here, for the first time, the synthesis of superparamagnetic iron oxides with soft-templated mesopore structure is reported. The synthesis of nanostructured maghemite and magnetite films succeeds using micelles of amphiphilic block-copolymers as templates. A thermal treatment of the initially formed mesoporous ferrihydrite in nitrogen produces maghemite, which can be partly reduced to magnetite via thermal treatment in hydrogen while retaining the templated mesopore structure. The resulting materials feature a unique combination of high surface area, controlled pore diameter, and tunable magnetic properties. KW - Iron oxide films KW - Mesoporosity KW - Soft-templated PY - 2018 U6 - https://doi.org/10.1002/admi.201700960 SN - 2196-7350 VL - 5 IS - 3 SP - 1700960, 1 EP - 1700960, 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-43560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Licht ins Dunkle - In situ Untersuchungen mechanochemischer Reaktionen N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In this contribution, I will discuss our recent results investigating the formation of (polymorphic) cocrystals and metal phosphonates. First investigations of a mechanochemical synthesis under controlled temperature which allow determining the activation barrier are presented. Furthermore, in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat.5 Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - PRORA Fachtagung Prozessnahe Röntgenanalytik CY - Berlin, Germany DA - 30.11.2017 KW - Mechanochemie KW - XRD KW - In situ PY - 2017 AN - OPUS4-43562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Kulla, Hannes A1 - Wilke, Manuel T1 - In situ investigations of mechanochemical reactions - new insights in formation pathways N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases because of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.17 KW - Mechanochemistry KW - In situ PY - 2017 AN - OPUS4-43563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in formation pathways: in situ investigations of mechanochemical reactions N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.2,3 We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In this contribution, I will discuss our recent results investigating the formation of (polymorphic) cocrystals and metal phosphonates.4 First investigations of a mechanochemical synthesis under controlled temperature which allow determining the activation barrier are presented. Furthermore, in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat.5 Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - International Conference on Mechanochemistry and Mechanical Alloying, INCOME 2017 CY - Kosice, Slovakia DA - 03.09.2017 KW - Mechanochemistry KW - In situ PY - 2017 AN - OPUS4-43564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1,2 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.3,4 We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy (Fig.1a) The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In this talk I will discuss our recent results investigating the formation of (polymorphic) cocrystals.6-7 First investigations of a mechanochemical synthesis under controlled temperature (Fig 2a) which allow determining the activation barrier are presented.8 Furthermore, in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat. T2 - Kolloquium Anorganische und Analytische Chemie Universität Freiburg CY - Freiburg, Germany DA - 20.12.2017 KW - In situ KW - Mechanochemistry KW - Rietveld PY - 2017 AN - OPUS4-43566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical syntheses: New insights in formation pathways N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals.1,2 The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms.3,4 We recently introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy (Fig.1a) The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. In this talk I will discuss our recent results investigating the formation of (polymorphic) cocrystals. T2 - CF@Bo2017 Crystal Forms Bologna 2017 CY - Bologna, Italy DA - 04.06.2017 KW - Mechanochemistry PY - 2017 AN - OPUS4-43567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seidel, R. A1 - Kraffert, K. A1 - Kabelitz, Anke A1 - Pohl, M.N. A1 - Kraehnert, R. A1 - Emmerling, Franziska A1 - Winter, B. T1 - Detection of the electronic structure of iron-(III)-oxo oligomers forming in aqueous solutions N2 - The nature of the small iron-oxo oligomers in iron-(III) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-Jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe3+ monomers. Addition of NaOH initiates Fe3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2–0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and Oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe3+. Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron Peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit Maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the Transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering. KW - Iron-oxo oligomers KW - XPS KW - Electronic structure PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-433468 SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 48 SP - 32226 EP - 32234 AN - OPUS4-43346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joester, Maike A1 - Seifert, Stephan A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - Physiological influence of silica on germinating pollen as shown by Raman spectroscopy N2 - The process of silicification in plants and the biochemical effects of silica in plant tissues are largely unknown. To study the molecular changes occurring in growing cells that are exposed to higher than normal concentration of silicic acid, Raman spectra of germinating pollen grains of three species (Pinus nigra, Picea omorika, and Camellia japonica) were analyzed in a multivariate classification approach that takes into account the variation of biochemical composition due to species, plant tissue structure, and germination condition. The results of principal component analyses of the Raman spectra indicate differences in the utilization of stored lipids, a changed mobilization of storage carbohydrates in the pollen grain bodies, and altered composition and/or structure of cellulose of the developing pollen tube cell walls. These biochemical changes vary in the different species. KW - Silica KW - Raman spectroscopy KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.1002/jbio.201600011 SN - 1864-063X SN - 1864-0648 VL - 10 IS - 4 SP - 542 EP - 552 AN - OPUS4-40090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseph, A. A1 - Bernardes, C. E. S. A1 - Druzhinina, A. I. A1 - Varushchenko, R. M. A1 - Nguyen, Thi Yen A1 - Emmerling, Franziska A1 - Yuan, L. A1 - Dupray, V. A1 - Coquerel, G. A1 - Minas da Piedade, M. E. T1 - Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z′=1 and Z′=2 forms N2 - Particularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packing are usually behind exceptions from the hypothesis of Z′=1 forms being more stable than their higher Z′ analogues, in this case, the HAP polymorph with stronger hydrogen bonds (Z′=2) is also the one with higher density. KW - Polymorphism KW - Polymorphic transition KW - 4'-hydroxyacetophenone PY - 2017 U6 - https://doi.org/10.1021/acs.cgd.6b01876 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 4 SP - 1918 EP - 1932 PB - ACS AN - OPUS4-40167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juribašić, M. A1 - Halasz, I. A1 - Budimir, A. A1 - Užarević, K. A1 - Lukin, S. A1 - Monas, A. A1 - Emmerling, Franziska A1 - Plavec, J. A1 - Ćurić, M. T1 - Reversible Gas−Solid Ammonia N−H Bond Activation Mediated by an Organopalladium Complex N2 - N−H bond activation of gaseous ammonia is achieved at room temperature in a reversible solvent-free reaction using a solid dicyclopalladated azobenzene complex. Monitoring of the gas−solid reaction in real-time by in situ solid-state Raman spectroscopy enabled a detailed insight into the stepwise activation pathway proceeding to the final amido complex via a stable diammine intermediate. Gas−solid synthesis allowed for isolation and subsequent structural characterization of the intermediate and the final amido product, which presents the first dipalladated complex with the PdII−(μ-NH2)−PdII bridge. Gas−solid reaction is readily followed via color changes associated with conformational switching of the palladated azobenzene backbone. The reaction proceeds analogously in solution and was characterized by UV−vis and NMR spectroscopies showing the same stepwise route to the amido complex. Combining the experimental data with density functional theory calculations we propose a stepwise mechanism of this heterolytic N−H bond activation assisted by exogenous ammonia. KW - In situ KW - Mechanochemistry PY - 2017 U6 - https://doi.org/10.1021/acs.inorgchem.7b00422 VL - 56 SP - 5342 EP - 5351 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-40464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Greiser, Sebastian A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Knowing When To Stop-Trapping Metastable Polymorphs in Mechanochemical Reactions N2 - The cocrystal formation of pyrazinamide (PZA) with malonic acid (MA) was studied in situ. The mechanochemical reaction proceeds via conversion of a crystalline intermediate (PZA:MA II) into the thermodynamically more stable form (PZA:MA I) upon further grinding. The information derived from in situ powder X-ray diffraction (PXRD) enabled the isolation of this new metastable polymorph. On the basis of the PXRD data, the crystal structure of the 1:1 cocrystal PZA:MA II was solved. The polymorphs were further characterized and compared by Raman spectroscopy, solid-state NMR spectroscopy, differential thermal analysis/thermogravimetric analysis, and scanning electron microscopy. Our study demonstrates how monitoring mechanochemical reactions by in situ PXRD can direct the discovery and isolation of even short-lived intermediates not yet accessed by conventional methods. KW - Mechanochemistry KW - Polymorphs KW - Metastable KW - In situ PXRD KW - Cocrystal KW - Pyrazinamide PY - 2017 U6 - https://doi.org/10.1021/acs.cgd.6b01572 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 3 SP - 1190 EP - 1196 AN - OPUS4-39420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Fendel, Nicole A1 - Greiser, Sebastian A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Impact is important - Systematic investigation of the influence of milling balls in mechanochemical reactions N2 - A newly established in situ technique using Raman spectroscopy was employed for the detailed kinetic investigation of mechanochemical reaction pathways. This approach was applied for the systematic investigation of the direct influence of colliding balls on the reaction rate constants of a mechanochemical cocrystallization reaction. As a model reaction, the mechanochemical cocrystallization of felodipine and the coformer imidazole was investigated. Keeping the total ball mass constant by varying the number of milling balls, our study reveals that the impact of each single collision has a more significant influence on the reaction kinetics than expected. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.oprd.6b00435 U6 - https://doi.org/10.1021/acs.oprd.6b00435 SN - 1083-6160 SN - 1520-586X VL - 21 IS - 4 SP - 655 EP - 659 AN - OPUS4-40355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Wilke, Manuel A1 - Fischer, Franziska A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Warming up for mechanosynthesis – temperature development in ball mills during synthesis N2 - We present a first direct measurement of the temperature during milling combined with in situ Raman spectroscopy monitoring. The data reveal a low temperature increase due to the mechanical impact and clear temperature increases as a consequence of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. KW - Thermography KW - Milling KW - Mechanochemistry KW - Soft matter PY - 2017 U6 - https://doi.org/10.1039/c6cc08950j SN - 1364-548X SN - 1359-7345 SN - 0009-241X VL - 53 IS - 10 SP - 1664 EP - 1667 AN - OPUS4-39251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Bach, S. A1 - Gorelik, T. A1 - Kolb, U. A1 - Tremel, W. A1 - Emmerling, Franziska T1 - Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution N2 - Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pathway for the Synthesis of divalent phosphonates as a possibility to generate new, in certain cases metastable compounds. The benefits of in situ investigation of synthesis mechanisms as well as the implementation of sophisticated methods for the structure analysis of the resulting compounds are discussed. KW - Metal phosphonate KW - Mechanochemistry PY - 2017 U6 - https://doi.org/10.1515/zkri-2016-1971 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 209 EP - 222 PB - De Gruyter AN - OPUS4-40003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, K. A1 - Schmack, R. A1 - Klemm, H. W. A1 - Kabelitz, Anke A1 - Schmidt, T. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Mechanism and kinetics of hematite crystallization in air: Linking bulk and surface models via mesoporous films with defined nanostructure N2 - Iron can form numerous oxides, hydroxides, and oxide−hydroxides. Despite their relevance, many of the transformation processes between these phases are still poorly understood. In particular the crystallization of quasi-amorphous hydroxides and oxide−hydroxides is difficult to assess, since typical diffraction and scattering methods provide only sampleaveraged information about the crystallized phases. We report a new approach for the investigation of the crystallization of oxide−hydroxides. The approach relies on model-type films that comprise a defined homogeneous nanostructure. The nanostructure allows quantitative linking of Information obtained by bulk-averaging diffraction techniques (XRD, SAXS) with locally resolved information, i.e., Domain sizes (SEM, TEM, LEEM) and phase composition (SAED). Using time-resolved imaging and diffraction we deduce mechanism and kinetics for the crystallization of ferrihydrite into hematite. Hematite forms via nucleation of hematite domains and subsequent Domain growth that terminates only upon complete transformation. A Johnson−Mehl−Avrami−Kolmogorov model describes the kinetics over a wide temperature range. The derived understanding enables the first synthesis of ferrihydrite films with ordered mesoporosity and quantitative control over the films’ hematite and ferrihydrite content. KW - Iron oxide KW - Crystallization KW - Mesoporous films KW - Nanostructure PY - 2017 U6 - https://doi.org/10.1021/acs.chemmater.6b05185 SN - 0897-4756 SN - 1520-5002 VL - 29 IS - 4 SP - 1724 EP - 1734 AN - OPUS4-39690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, Thi Yen A1 - Roessler, Ernst A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets N2 - Theoretical and experimental studies indicate that crystal nucleation can take more complex pathways than expected on the ground of the classical nucleation theory. Among these pathways are the formation of pre-nucleation clusters and amorphous precursor phases. A direct in situ observation of the different pathways of nucleation from solution is challenging since the paths can be influenced by heterogeneous nucleation sites, such as container walls. Here, we provide insights into the crystallization process using the in situ combination of an acoustic levitator, Raman spectroscopy, and X-ray scattering. The contactless sample holder enables the observation of homogeneous crystallization processes and the detection of intermediates and final crystalline forms. We provide evidence for the existence of multiple pathways of nucleation based on the investigation of the crystallization of organic molecules from different solvents. Starting from a diluted solution, a supersaturation is reached during the experiment due to the evaporation of the solvent. The highly supersaturated solution reveals different pathways of crystallization. Depending on the degree of supersaturation either the thermodynamically stable or the metastable crystal form is observed. KW - Crystallization KW - In situ XRD KW - Polymorphism KW - Polyamorphism KW - Raman spectroscopy PY - 2017 U6 - https://doi.org/10.1515/zkri-2016-1964 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 15 EP - 24 PB - De Gruyter CY - Berlin AN - OPUS4-39708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietzsch, Michael A1 - Andrusenko, Iryna A1 - Branscheid, Robert A1 - Emmerling, Franziska A1 - Kolb, Ute A1 - Tremel, Wolfgang T1 - Snapshots of calcium carbonate Formation - a step by step analysis N2 - Recent advances in our understanding of CaCO, nucleation from solution have provoked new and challenging questions. We have studied CaC03 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light Scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate reproducibility. TEM snapshots taken during different stages of the precipitation process identified different phases and morphologies. At a high level of supersaturation homogeneous nucleation in solution led to the formation of amorphous CaC03 particles (diameter=30 nm), which transformed via vaterite to calcite. Nucleation occurred uniformly in solution which appears to be unique for the CaC03 System. In the presence of Na-polymethacrylate (Na-PMA), heterogeneous nucleation was suppressed and Ca-polymer aggregates were formed in the prenucleation stage. Beyond a critical threshold supersaturation CaC03 particles formed in solution outside of these aggregates. The nucleation process resembled that without additive, indicating that Na-PMA exerts only a minor effect on the CaC03 nucleation. In the postnucleation stage, the polymer led to the formation of extended liquid-like networks, which served as a precursor phase for solid ACC particles that formed alongside the network. KW - biomineralization KW - calcium carbonate KW - nucleation KW - polymer additives PY - 2017 U6 - https://doi.org/10.1515/zkri-2016-1973 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 255 EP - 265 PB - De Gruyter CY - Berlin AN - OPUS4-39863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Franziska A1 - Emmerling, Franziska T1 - Synthesen in der Kugelmühle N2 - Wärme, Licht und Elektrizität sind die typischen Energiequellen chemischer Synthesen. In den letzten Jahren haben sich aber auch mechanische Kräfte etabliert: Mechanochemie braucht kein Lösungsmittel und funktioniert bei Raumtemperatur. Über die zugrundeliegenden Prozesse ist bislang wenig bekannt. KW - Mechanochemie PY - 2016 U6 - https://doi.org/10.1002/nadc.20164046717 SN - 1439-9598 SN - 1868-0054 VL - 64 IS - 5 SP - 509 EP - 513 AN - OPUS4-39282 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Akhemtova, Irina A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of cerium(IV)-phosphonates N2 - The syntheses and crystal structures of two cerium(IV) phosphonates are presented. Cerium(IV) bis(phenylphosphonate) Ce(O3PC6H5)2 1 can be formed from precipitation and mechanochemical reaction, whereas cerium(IV) bis(carboxymethylphosphonate) monohydrate Ce(O3PCH2COOH)2 H2O 2 is only accessible via ball milling. All reactions proceed very fast and are completed within a short time span. In situ measurements for the syntheses of 1 show that the product occurs within seconds or a few minutes, respectively. The structures were solved from powder X-ray diffraction data. KW - In situ studies KW - Mechanochemistry KW - XRD PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2507-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13733 EP - 13741 PB - Springer Science + Business Media B.V. AN - OPUS4-45672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Schuzjajew, K. A1 - Wilke, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Rademann, K. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands N2 - Two divalent manganese aminophosphonates, manganese mono (nitrilotrimethylphosphonate) (MnNP3) and manganese bis N-(carboxymethyl)iminodi(methylphosphonate)) (Mn(NP2AH)2), have been prepared by mechanochemical synthesis and characterized by powder X-ray diffraction (PXRD). The structure of the novel compound Mn(NP2AH)2 was determined from PXRD data. MnNP3 as well as Mn(NP2AH)2 exhibits a chain-like structure. In both cases, the manganese atom is coordinated by six oxygen atoms in a distorted octahedron. The local coordination around Mn was further characterized by extended X-ray absorption fine structure. The synthesis process was followed in situ by synchrotron X-ray diffraction revealing a three-step reaction mechanism. The asprepared manganese(II) phosphonates were calcined on air. All samples were successfully tested for their suitability as catalyst material in the oxygen evolution reaction. KW - Mechanochemistry KW - In situ KW - XRD PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2608-6 SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 19 SP - 13390 EP - 13399 PB - Springer Science + Business Media B.V. AN - OPUS4-45673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ studies of mechanochemistry: a force of synthesis N2 - Recent results in the field of mechanisms and kinetics of mechanochemical reactions. T2 - Seminar GFZ Potsdam CY - Postdam, Germany DA - 28.03.2018 KW - In situ KW - XRD KW - Rietveld PY - 2018 AN - OPUS4-46992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Synchrotron X-ray Investigations N2 - Summary of the techniques available at the BAMline and µspot BEamline. T2 - Workshop Humboldt University and Hebrew University of Jerusalem CY - Berlin, Germany DA - 09.10.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time In situ investigations N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - 5th International Conference "Fundamental Bases of Mechanochemical Technologies" CY - Novosibirsk, Russia DA - 25.06.2018 KW - Mechanochemistry KW - XRD KW - Kinetic KW - Coordination polymers PY - 2018 AN - OPUS4-46994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ characterization of nucleation, growth, crystallization and dissolution of nanoscaled iron oxides N2 - Nucleation and growths of iorn oxide nanoparticles studied in situ using XRD, XRF, SAXS and XANES. T2 - International CRC meeting CY - Berlin, Germany DA - 10.10.2018 KW - XRD KW - XANES PY - 2018 AN - OPUS4-46995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the Force be with you - Mechanochemical syntheses studied in situ N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Seminar Universität Montpellier CY - Montpellier, France DA - 24.01.2019 KW - Mechanochemistry KW - In situ PY - 2019 AN - OPUS4-47261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Use of synchrotron radiation for special sample conditions. Recent work of the group at BESSY II. T2 - DESY Usermeeting Satelite Workshop CY - Hamburg, Germany DA - 22.01.2019 KW - XRD KW - In situ KW - Rietveld KW - Synchrotron PY - 2019 AN - OPUS4-47262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensation investigated in situ N2 - The mechanochemical Knoevenagel condensation of malononitrile with p-nitrobenzaldehyde was studied in situ using a tandem approach. X-ray diffraction and Raman spectroscopy were combined to yield time-resolved information on the milling process. Under solvent-free conditions, the reaction leads to a quantitative conversion to p-nitrobenzylidenemalononitrile within 50 minutes. The in situ data indicate that the process is fast and proceeds under a direct conversion. After stopping the milling process, the reaction continues until complete conversion. The continuous and the stopped milling process both result in crystalline products suitable for single crystal X-ray diffraction. KW - Mechanochemistry KW - Ball milling KW - C–C coupling KW - In situ KW - Knoevenagel condensation PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-425388 VL - 13 SP - 2010 EP - 2014 PB - Beilstein-Institut AN - OPUS4-42538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - Emmerling, Franziska A1 - Kemnitz, E. T1 - Strontium-coordination polymers based on tetrafluorophthalic and phthalic acids: mechanochemical synthesis, ab initio structures determination, and spectroscopic characterization N2 - Two strontium-based dicarboxylate systems [Sr(oBDC-F4)(H2O)2] (1) and [{Sr(oBDC)(H2O)2)·H2O] (2) were synthesized mechanochemically via milling of Sr(OH)2·8H2O with tetrafluorophthalic acid (H2oBDC-F4) or phthalic acid (H2oBDC), respectively. The new structures were determined ab initio from the powder X-ray diffraction (PXRD) data. Both compounds 1 and 2 crystallize in the monoclinic space group P21 /c as two-dimensional coordination polymers (2D-CPs). The determined structures were validated by extended X-ray absorption (EXAFS) data. Compounds 1 and 2 show different thermal stabilities. The fluorinated CP 1 is decomposed at 300 °C while the nonfluorinated CP 2 transforms into a new phase after thermal treatment at 400 °C. The two hydrated CPs exhibit small surface areas which increase after the thermal posttreatment for 1 but remains unchanged for the dehydrated sample of 2. Dynamic vapor sorption (DVS) experiments indicate that both the dehydrated and hydrated samples of 2 depict no significant differences in their adsorption isotherms. The DVS of water indicates that the phase transition after thermal posttreatment of 2 is irreversible. KW - Mechanochemistry KW - XRD KW - NMR PY - 2017 U6 - https://doi.org/10.1039/c7dt02564e SN - 1477-9226 SN - 1477-9234 VL - 46 IS - 37 SP - 12574 EP - 12587 PB - The Royal Society of Chemistry CY - Cambridge AN - OPUS4-42261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Zimathies, Annett A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Crystal structure and in situ investigation of a mechanochemical synthesized 3D zinc N-(phosphonomethyl)glycinate N2 - The mechanochemical synthesis of the zinc N-(phosphonomethyl)glycinate Zn(O₃PCH₂NH₂CH₂CO₂) H₂O is presented. The structure was solved from powder X-ray diffraction (PXRD) data. In the three-dimensional pillared structure, the Zn atoms are coordinated tetrahedrally. In situ investigations of the reaction process with synchrotron PXRD and Raman spectroscopy reveal a two-step process including the formation of an intermediate. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2017 U6 - https://doi.org/10.1007/s10853-017-1121-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 20 SP - 12013 EP - 12020 PB - Springer CY - New York AN - OPUS4-41490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Formanek, P. A1 - Meyer, Christian A1 - Krüger, O. A1 - Scharf, Holger A1 - Reinsch, Stefan A1 - Ostermann, Markus A1 - Nofz, Marianne A1 - Jäger, Christian A1 - Adam, Christian A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4 chemically stabilized at room temperature: synthesis, physical characterization, and X-ray powder diffraction data N2 - This paper reports the first successful synthesis and the structural characterization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is chemically stabilized down to room temperature and free of crystalline impurity phases. Several batches of the title compound were synthesized and thoroughly characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy mapping in SEM, solid-state 31P nuclear magnetic resonance (31P-NMR) spectroscopy including the TRAPDOR method, differential thermal analysis (DTA), gas-sorption methods, optical Emission spectroscopy, X-ray fluorescence spectroscopy, and ion chromatography. Parameters that are critical for the synthesis were identified and optimized. The synthesis procedure yields reproducible results and is well documented. A high-quality XRD pattern of the title compound is presented, which was collected with monochromatic copper radiation at room temperature in a wide 2θ range of 5°–100°. KW - Stabilization of high-temperature phase at RT KW - Nanochrystalline AlPO4 KW - Beta-christobalite structure type KW - High-cristobalite form KW - Aluminium phosphate PY - 2017 U6 - https://doi.org/10.1017/S0885715617000537 SN - 1945-7413 SN - 0885-7156 VL - 32 IS - S1 SP - S193 EP - S200 PB - JCPDS-ICDD CY - Cambridge AN - OPUS4-42235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Metal Phosphonates N2 - Mechanochemistry is a suitable method for synthesizing a variety of metal phosphonates. By varying the ratio of the reactants, it is possible to control the reaction pathway. With this approach targeted synthesis of a certain composition is possible. Several new metal phosphonate structures were solved from the powder X-ray diffraction data including molecular metal phosphonates. The results demonstrate a new fast, facile, and environmental friendly alternative for the preparation of metal phosphonates. In situ investigations of the milling processes provided insights into the formation process of metal phosphonates. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. T2 - 1st European Workshop on Metalphophantes CY - Swanse, UK DA - 18.09.2018 KW - Mechanochemistry PY - 2018 AN - OPUS4-46382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanistic investigations of mechanosyntheses N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms often remain unclear. In the last years, we have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. A further development is the in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. [5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. Based on these data, metastable polymorphs of cocrystals and coordination polymorphs could be isolated and struc-turally characterized. A multi-step diffusion mechanism was identified for most systems. Crystalline phases were obtained intermediately, suggesting that the synthesis is following Ostwald’s rules of stages. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Beilstein Symposium MECHANOCHEMISTRY: MICROSCOPIC AND MACROSCOPIC ASPECTS CY - Rüdesheim, Germany DA - 13.11.2018 KW - Mechanochemistry KW - Phosphonates KW - In situ PY - 2018 AN - OPUS4-46758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simoes, R. A1 - Bernades, C. A1 - Joseph, A. A1 - Piedade, F. A1 - Kraus, Werner A1 - Emmerling, Franziska A1 - Diogo, H. A1 - da Piedade, M. T1 - Polymorphism in simvastatin: Twinning, disorder, and enantiotropic phase transitions N2 - : Simvastatin is one of the most widely used active pharmaceutical ingredients for the treatment of hyperlipidemias. Because the compound is employed as a solid in drug formulations, particular attention should be given to the characterization of different polymorphs, their stability domains, and the nature of the phase transitions that relate them. In this work, the phase transitions delimiting the stability domains of three previously reported simvastatin forms were investigated from structural, energetics, and dynamical points of view based on single crystal X-ray diffraction (SCXRD), hot stage microscopy (HSM), and differential scanning calorimetry (DSC) experiments (conventional scans and heat capacity measurements), complemented with molecular dynamics (MD) simulations. Previous assignments of the crystal forms were confirmed by SCXRD: forms I and II were found to be orthorhombic (P212121, Z′/Z = 1/4) and form III was monoclinic (P21, Z′/Z = 2/4). The obtained results further indicated that (i) the transitions between different forms are observed at 235.9 ± 0.1 K (form III → form II) and at 275.2 ± 0.2 K (form II → form I) in DSC runs carried out at 10 K min−1 and close to these values when other types of techniques are used (e.g., HSM). (ii) They are enantiotropic (i.e., there is a transition temperature relating the two phases before fusion at which the stability order is reversed), fast, reversible, with very little hysteresis between heating and cooling modes, and occur under single crystal to single crystal conditions. (iii) A nucleation and growth mechanism seems to be followed since HSM experiments on single crystals evidenced the propagation of an interface, accompanied by a change of birefringence and crystal contraction or expansion (more subtle in the case of form III → form II), when the phase transitions are triggered. (iv) Consistent with the reversible and small hysteresis nature of the phase transitions, the SCXRD results indicated that the molecular packing is very similar in all forms and the main structural differences are associated with conformational changes of the “ester tail”. (v) The MD simulations further suggested that the tail is essentially “frozen” in two conformations below the III → II transition temperature, becomes progressively less hindered throughout the stability domain of form II, and acquires a large conformational freedom above the II → I transition. Finally, the fact that these transitions were found to be fast and reversible suggests that polymorphism is unlikely to be a problem for pharmaceutical formulations employing crystalline simvastatin because, if present, the III and II forms will readily convert to form I at ambient temperature. KW - Polymorphism KW - Twinning KW - Disorder KW - Simvastatine PY - 2018 U6 - https://doi.org/10.1021/acs.molpharmaceut.8b00818 SN - 1543-8384 SN - 1543-8392 VL - 15 IS - 11 SP - 5349 EP - 5360 PB - American Chemical Society CY - Washington, DC AN - OPUS4-46927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Tumanov, N. A1 - Tumanova, N. A1 - Fischer, Franziska A1 - Morelle, F. A1 - Ban, V. A1 - Robeyns, K. A1 - Filinchuk, Y. A1 - Wouters, J. A1 - Leyssens, T. T1 - Exploring polymorphism and stoichiometric diversity in naproxen/proline cocrystals N2 - We present naproxen/proline cocrystals discovered when combining enantiopure and racemic naproxen and proline. Using liquid-assisted grinding as the main method to explore the variety of crystal forms in this system, we found 17 cocrystals, of which the structures of only four of them were previously known. The naproxen/proline system exhibited multiple polymorphs of 1 : 1 stoichiometry as well as more rare cocrystals with 1 : 2 and 2 : 3 stoichiometries, two cocrystal hydrates and one cocrystal solvate. In situ ballmilling, used to monitor liquid-assisted grinding reactions, revealed that the solvent dictates the reaction intermediates even if the final reaction product stays the same. Synchrotron X-ray diffraction data collected in situ upon heating allowed us to monitor directly the phase changes upon heating and gave access to pure diffraction patterns of several cocrystals, thus enabling their structure determination from powder X-ray diffraction data; this method also confirmed the formation of a conglomerate in the RS-naproxen/DL-proline system. Proline in cocrystals kept its ability to form charge-assisted head-to-tail N-H⋯O hydrogen bonds, typical of pure crystalline amino acids, thus increasing the percentage of strong chargeassisted interactions in the structure and consequently providing some of the cocrystals with higher melting points as compared to pure naproxen. The majority of drugs are chiral, and hence, these data are of importance to the pharmaceutical industry as they provide insight into the challenges of chiral cocrystallization. KW - In situ KW - Mechanochemistry KW - XRD PY - 2018 UR - https://pubs.rsc.org/en/Content/ArticleLanding/CE/2018/C8CE01338A#!divAbstract U6 - https://doi.org/10.1039/c8ce01338a SN - 1466-8033 VL - 20 IS - 45 SP - 7308 EP - 7321 PB - Royal Society of Chemistry CY - London AN - OPUS4-46913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In-situ investigations of mechanochemical reactions N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic[1], metal-organic[2], and inorganic[3] compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy.[4] Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time.[5] Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - ACS Conference Boston CY - Boston, USA DA - 19.08.2018 KW - Mechanochemistry KW - In situ KW - Kinetic PY - 2018 AN - OPUS4-46989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in mechanochemical processes using real-time in situ investigations N2 - Mechanochemistry is increasingly used for synthesizing various materials including metal organic compounds and cocrystals. Although this synthesis approach offers a fast and pure synthesis in high yields, there is a lack in understanding the mechanisms of milling reactions. The necessary data can only be obtained in in situ experiments, which were only recently established for milling reactions. Herein, we present a novel setup enabling a combined in situ investigation of mechanochemical reactions using synchrotron XRD and Raman spectroscopy. T2 - ECM31 CY - Oviedo, Spain DA - 18.08.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical reactions N2 - Presentation of the recent results in the context of in situ investigations of reactions using X-ray diffraction. T2 - Germany Brazil Workshop: New light on mechanisms of chemical reactions CY - Kiel, Germany DA - 31.07.2018 KW - In situ KW - XRD PY - 2018 AN - OPUS4-46991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Terkawi, Abdal-Azim A1 - Scholz, G. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinsch, Stefan A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Ca- and Sr- tetrafluoroisophthalates: mechanochemical synthesis, characterization, and ab initio structure determination N2 - New fluorinated coordination polymers were prepared mechanochemically by milling the alkaline earth metal hydroxides MII(OH)2·xH2O (MII: Ca, Sr) with tetrafluoroisophthalic acid (H2mBDC-F4). The structures of [{Ca(mBDC-F4)(H2O)2}·H2O] and [{Sr(mBDC-F4)(H2O)2}·H2O] were determined based on ab initio calculations and their powder X-ray diffraction (PXRD) data. The compounds are isomorphous and crystallize in the orthorhombic space group P212121. The determined structures were validated by using extended X-ray absorption (EXAFS) data. The new materials were thoroughly characterized using elemental analysis, thermal analysis, magic angle spinning NMR, and attenuated total reflection-infrared spectroscopy. Further characterization methods such as BET, dynamic vapor sorption, and scanning electron microscopy imaging were also used. Our investigations indicate that mechanochemistry is an efficient method for preparing such materials. KW - Mechanochemistry KW - In situ KW - XRD KW - Coordination polymers PY - 2017 UR - http://pubs.rsc.org/-/content/articlehtml/2017/dt/c7dt00734e U6 - https://doi.org/10.1039/c7dt00734e VL - 46 IS - 18 SP - 6003 EP - 6012 AN - OPUS4-41516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matoga, D. A1 - Roztocki, K. A1 - Wilke, Manuel A1 - Emmerling, Franziska A1 - Oszajca, M. A1 - Fitta, M. A1 - Bałanda, M. T1 - Crystalline bilayers unzipped and rezipped: solid-state reaction cycle of a metal–organic framework with triple rearrangement of intralayer bonds N2 - We present a series of remarkable structural transformations for a family of layered metal–organic frameworks (MOFs) in a three-step solid-state reaction cycle. The cycle represents new dynamic behavior of 2D coordination polymers and involves the sequence of reactions: {[Mn2(ina)4(H2O)2]·2EtOH}n (JUK-1) → {(NH4)2[Mn(ina)2(NCS)2]}n·xH2O (JUK-2) → {[Mn2(ina)2(Hina)2(NCS)2]}n (JUK-3) → JUK-1 (Hina = isonicotinic acid), each accompanied by rearrangement of intralayer coordination bonds and each induced by a different external stimulus. In situ investigation of the first step of the cycle by combined synchrotron X-ray diffraction and Raman spectroscopy reveals direct mechanochemical unzipping of JUK-1 bilayers to respective JUK-2 layers with reaction rates dependent on the milling conditions. In contrast, the reverse zipping of JUK-2 layers involves two steps and proceeds through a new MOF (JUK-3) whose structure was elucidated by powder X-ray diffraction. Magnetic measurements confirm conversions of manganese nodes in the reaction cycle. The findings indicate the possibility of developing coordination-based assemblies with large structural responses for use in smart stimuli-responsive systems and sensor technologies. KW - Mechanochemistry KW - In situ KW - XRD KW - MOF PY - 2017 UR - http://pubs.rsc.org/is/content/articlehtml/2017/ce/c7ce00655a U6 - https://doi.org/10.1039/C7CE00655A VL - 19 SP - 2987 EP - 2995 AN - OPUS4-41517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Fischer, Franziska A1 - Benemann, Sigrid A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD N2 - The effect of the reactant powder mass on reaction times for the mechanochemical formation of a soft matter model system was studied by in situ PXRD. The syntheses were performed at a constant ball mass in a shaker mill with and without glassy SiO2 as an inert additive. Reaction times decreased with the increase of the ball to reactant ratio (BRR). The kinetic influence of the SiO2 powder was excluded. The decrease in the reaction time with decreasing mass of reactants was related to the rise in the stress energy transferred to the powder by a higher ball impact. The BRR had no effect on the induction time. But the product conversion was accelerated by raising the BRR. While a certain temperature is needed for the activation of reactants in the induction phase, the conversion of soft matter reactants is rather controlled by impact than temperature. KW - XRD KW - Mechanochemistry PY - 2017 UR - http://pubs.rsc.org/en/content/articlehtml/2017/ce/c7ce00502d U6 - https://doi.org/10.1039/c7ce00502d VL - 19 IS - 28 SP - 3902 EP - 3907 AN - OPUS4-41197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grunert, B. A1 - Saatz, Jessica A1 - Hoffmann, Katrin A1 - Appler, F. A1 - Lubjuhn, Dominik A1 - Jakubowski, Norbert A1 - Resch-Genger, Ute A1 - Emmerling, Franziska A1 - Briel, A. T1 - Multifunctional rare-earth element nanocrystals for cell labeling and multimodal imaging N2 - In this work, we describe a simple solvothermal route for the synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4−PAA) functionalized with poly(acrylic)acid (PAA), that are applicable as cell labeling probes for multimodal cellular imaging. The Eu3+ doping of the vanadate matrix provides optical functionality, due to red photoluminescence after illumination with UV light. The Gd3+ ions of the nanocrystals reduce the T1 relaxation time of surrounding water protons, allowing these nanocrystals to act as a positive MRI contrast agent with a r1 relaxivity of 1.97 mM−1 s−1. Low background levels of Eu3+, Gd3+, and V5+ in biological systems make them an excellent label for elemental microscopy by Laser Ablation (LA)-ICP-MS. Synthesis resulted in polycrystalline nanocrystals with a hydrodynamic diameter of 55 nm and a crystal size of 36.7 nm, which were further characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL) and transmission electron microscopy (TEM). The multifunctional nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells (MSCs) and A549 (adenocarcinomic human alveolar basal epithelial) cells. KW - Bioimaging KW - Nanoparticle KW - Multimodal KW - Lanthanide PY - 2018 U6 - https://doi.org/10.1021/acsbiomaterials.8b00495 SN - 2373-9878 VL - 4 IS - 10 SP - 3578 EP - 3587 PB - ACS Publications CY - Washington, USA AN - OPUS4-46244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - In situ investigations of mechanochemical reactions N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there remains a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of our approach is shown for different model reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - In situ KW - Mechanochemistry KW - Milling PY - 2019 AN - OPUS4-47701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroh, Julia A1 - Ali, Naveed Zafar A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Ettringite via Mechanochemistry: A Green and Rapid Approach for Industrial Application N2 - Here, we report on a first mechanochemical synthesis of ettringite, an important cement hydrate phase. The mineral compound ettringite ([Ca3Al(OH)6]2·(SO4)3·26H2O) occurs rarely in nature, but is common for cement-based materials. Ettringite has wide technical application in the ceramic and paper industry. However, its typical wet-chemical synthesis is cumbersome and produces waste water and CO2 emissions. Here, we investigate the first mechanochemical synthesis of ettringite for developing an easy and sustainable alternative for industrial application. The mechanosynthesis was monitored in situ by coupled synchrotron X-ray diffraction (XRD) and infrared thermography (IRT). The consumption of the reactants and the formation of the reaction product were monitored with time-resolved XRD. IRT showed the temperature increase based on the exothermic reaction. The reaction conversion was significantly improved changing the strategy of the mechanosynthesis from a one- to a two-step process. The latter included neat pregrinding of solid reactants followed by a delayed addition of the stoichiometric amount of water. Thus, an increase of reaction conversion from 34 to 94% of ettringite could be achieved. KW - XRD KW - Mechanochemistry KW - Ettringite KW - In situ PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479016 SN - 2470-1343 VL - 4 IS - 4 SP - 7734 EP - 7737 PB - ACS Publications CY - Washington, DC AN - OPUS4-47901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surov, Artem O. A1 - Vasilev, Nikita A. A1 - Churakov, Andrei V. A1 - Stroh, Julia A1 - Emmerling, Franziska A1 - Perlovich, German L. T1 - Solid Forms of Ciprofloxacin Salicylate: Polymorphism, Formation Pathways, and Thermodynamic Stability N2 - The crystallization of ciprofloxacin - an antibacterial fluoroquinolone compound - with salicylic acid resulted in the isolation of five distinct solid forms of the drug, namely, an anhydrous salt, two polymorphic forms of the salt monohydrate, methanol and acetonitrile solvates, and the salt-cocrystal hydrate. The salicylate salts were investigated by different analytical techniques ranging from powder and single crystal X-ray diffractometry, differential scanning calorimetry, thermogravimetric analysis, variable temperature powder X-ray diffraction, dynamic vapor sorption analysis, dissolution, and solubility investigations. Real-time in situ Raman spectroscopy was used to investigate the mechanochemical formation pathways of the different solid polymorphs of ciprofloxacin salicylate. The mechanism of the phase transformation between the crystalline forms was evaluated under mechanochemical conditions. It was found that the formation pathway and kinetics of the grinding process depend on the form of the starting material and reaction conditions. The analysis of the solid-state thermal evolution of the hydrated salts revealed the two-step mechanism of dehydration process, which proceeds through a formation of the distinct intermediate crystalline products. KW - Cocrystal KW - Polymorphism KW - Ciprofloxacin KW - XRD KW - DSC PY - 2019 U6 - https://doi.org/10.1021/acs.cgd.9b00185 SN - 1528-7483 VL - 19 IS - 5 SP - 2979 EP - 2990 PB - American Chemical Society AN - OPUS4-47903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheurrell, Kerstin A1 - B. Martins, Inês C. A1 - Murray, Claire A1 - Emmerling, Franziska T1 - Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates N2 - Mechanochemistry has proven to be a highly effective method for the synthesis of organic compounds. We studied the kinetics of the catalyst-free Knoevenagel reaction between 4-nitrobenzaldehyde and malononitrile, activated and driven by ball milling. The reaction was investigated in the absence of solvents (neat grinding) and in the presence of solvents with different polarities (liquid-assisted grinding). The reaction was monitored using time-resolved in situ Raman spectroscopy and powder X-ray diffraction (PXRD). Our results indicate a direct relationship between solvent polarity and reaction kinetics, with higher solvent polarity leading to faster product (2-(4-nitrobenzylidone)malononitrile) formation. For the first time, we were able to isolate and determine the structure of an intermediate 2-(hydroxy(4-nitrophenyl)methyl)malononitrile based on PXRD data. KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588071 SN - 1463-9076 VL - 25 IS - 35 SP - 23637 EP - 23644 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ahmad, Shamim A1 - Tothadi, Srinu A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, Soumyajit T1 - Linker size dependent mechanical properties of di-imine based molecular crystals N2 - We have demonstrated the ability to modify the mechanical flexibility of molecular crystals by modulating the length of intervening linker moieties while keeping the terminal shape synthons the same. KW - Mechanically flexible molecular crystals KW - Mechanical properties KW - Crystal Engineering PY - 2023 U6 - https://doi.org/10.1039/D3CE00928A SN - 1466-8033 SP - 1 EP - 8 PB - RSC CY - London AN - OPUS4-58836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhattacharya, Biswajit A1 - Akhmetova, Irina A1 - Rautenberg, Max A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of phosphonate-based proton conducting metal organic frameworks and hydrogen-bonded metal phosphonates N2 - Proton exchange membrane fuel cells (PEMFCs) are one of the most promising alternative green energy technologies that deliver high energy density without CO2 emissions. The proton conductivity of proton exchange membranes (PEM) contributes to the overall efficiency of a PEMFC. Materials being used as PEMs must exhibit high proton conductivity at the working conditions of the targeted PEMFC. To date, Nafion and Nafion-like polymers with acidic functionality are widely used as membrane materials due to their high proton conductivity in the range of 10-1 to 10-2 Scm-1 at higher relative humidity. However, these materials suffer from high costs, hazardous production process, and poor performance at high temperatures, limiting their versatility. In this context, crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology, owing to their tunable framework structure. However, it is still challenging bulk synthesis for real-world applications of these materials. Herein, we present mechanochemical gram-scale synthesis of series of mixed ligand metal organic frameworks (MOFs) and metal hydrogen‐bonded organic frameworks (MHOFs) using phenylene diphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid with different bipyridyl type of ligands, respectively. In all cases, the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, the frameworks exhibited high proton conductivity. The study demonstrates the potential of green mechanosynthesis for preparations of framework-based proton conducting materials in bulk scale for green energy generation. T2 - 4th International Conference on Phosphonate Chemistry, Science and Technology, ICOPHOS-4 CY - Crete, Greece DA - 02.10.2023 KW - Proton exchange membrane fuel cells KW - Metal organic frameworks KW - Proton conducting materials PY - 2023 AN - OPUS4-58837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam A. L. T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-567659 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cakir, Cafer Tufan A1 - Piotrowiak, T. A1 - Reinholz, Uwe A1 - Ludwig, A. A1 - Emmerling, Franziska A1 - Streli, C. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin T1 - Exploring the Depths of Corrosion: A Novel GE-XANES Technique for Investigating Compositionally Complex Alloys N2 - In this study, we propose the use of nondestructive, depth-resolved, element-specific characterization using grazing exit X-ray absorption near-edge structure spectroscopy (GE-XANES) to investigate the corrosion process in compositionally complex alloys (CCAs). By combining grazing exit X-ray fluorescence spectroscopy (GE-XRF) geometry and a pnCCD detector, we provide a scanning-free, nondestructive, depth-resolved analysis in a sub-micrometer depth range, which is especially relevant for layered materials, such as corroded CCAs. Our setup allows for spatial and energy-resolved measurements and directly extracts the desired fluorescence line, free from scattering events and other overlapping lines. We demonstrate the potential of our approach on a compositionally complex CrCoNi alloy and a layered reference sample with known composition and specific layer thickness. Our findings indicate that this new GE-XANES approach has exciting opportunities for studying surface catalysis and corrosion processes in real-world materials. KW - Degradation mechanisms KW - Grazin exit XANES KW - Depth resolved XANES KW - Compositional complex alloys KW - Corrosion PY - 2023 U6 - https://doi.org/10.1021/acs.analchem.3c00404 VL - 95 SP - 4810 EP - 4818 PB - ACS Publications AN - OPUS4-57823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 U6 - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A. L. A1 - Silbernagl, Dorothee A1 - Yasuda, N. A1 - Feiler, Torvid A1 - Sturm, Heinz A1 - Emmerling, Franziska T1 - An atomistic mechanism for elasto-plastic bending in molecular crystals N2 - Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, μ-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals. KW - Mechanical property KW - Mechanical flexibility KW - Organic crystal PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-577722 SN - 2041-6520 VL - 14 IS - 13 SP - 3441 EP - 3450 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, D. A1 - Megha, S. N. A1 - Kiran, M. S. R. N. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Designing the Mechanical Plasticity of Benzylidene Indanones Based Molecular Crystals by Crystal Engineering N2 - Mechanically flexible molecular crystals have important implications in flexible optoelectronics, optical waveguides, etc. We report a series of 2-benzylidene 1-indanone based plastic crystals. Moreover, we have shown how plasticity can be fine-tuned through controlling intermolecular interactions. KW - Mechanical flexibility KW - Organic crystal KW - Mechanical property PY - 2023 U6 - https://doi.org/10.1021/acs.cgd.2c01137 SN - 1528-7483 VL - 23 SP - 657 EP - 661 PB - ACS Publications AN - OPUS4-57773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Akhmetova, Irina A1 - Das, Chayanika A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Synthesis and In Situ Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates N2 - Crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology owing to their tunable framework structure. However, it is still a challenging bulk synthesis for real-world applications of these materials. Herein, we report the mechanochemical gram-scale synthesis of two isostructural metal hydrogen-bonded organic frameworks (MHOFs) of Co(II) and Ni(II) based on 1-hydroxyethylidenediphosphonic acid (HEDPH4) with 2,2′-bipyridine (2,2′-bipy): Co(HEDPH3)2(2,2′-bipy)·H2O (1) and Ni(HEDPH3)2(2,2′-bipy)·H2O (2). In situ monitoring of the mechanochemical synthesis using different synchrotron-based techniques revealed a one-step mechanism – the starting materials are directly converted to the product. With the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, both frameworks exhibited proton conduction in the range of 10–4 S cm–1 at room temperature under humid conditions. This study demonstrates the potential of green mechanosynthesis for bulk material preparation of framework-based solid-state proton conductors. KW - Mechanochemistry KW - Proton conductivity KW - Metal Organic Frameworks PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-577777 VL - 8 IS - 19 SP - 16687 EP - 16693 PB - ACS Publications AN - OPUS4-57777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Heinekamp, Christian A1 - Smales, Glen Jacob A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Template-free synthesis of mesoporous, amorphous transition metal phosphate materials N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves a transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms while degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed with in-situ and ex-situ scattering and diffraction, as well as X -ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on a metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further applications, for instance, in (electro)catalysis. KW - Struvite KW - Pphosphates KW - Transition metal KW - In-situ SAXS/WAXS KW - Mesoporosity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569503 SN - 2040-3364 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-56950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - García-Ruiz, J. M. T1 - Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brines (East African Rift Valley) N2 - Soda lakes of the East African Rift Valley are hyperalkaline, hypersaline lakes extremely enriched in Na+, K+, Cl−, CO32−, HCO3−, and SiO2. In this paper, we investigate the chemical evolution in these lakes and the production of chemical sediments by salt precipitation via evaporation. Water samples from tributary springs and three lakes (Magadi, Nasikie Engida and Natron) have been experimentally studied by in-situ X-ray diffraction during evaporation experiments to characterize the sequence of mineral precipitation. These data are complemented by ex-situ diffraction studies, chemical analyses and thermodynamic hydrochemical calculations producing detailed information on the activity of all solution species and the saturation state of all minerals potentially generated by the given composition. Major minerals precipitating from these samples are sodium carbonates/bicarbonates as well as halite. The CO3/HCO3 ratio, controlled by pH, is the main factor defining the Na‑carbonates precipitation sequence: in lake brines where CO3/HCO3 > 1, trona precipitates first whereas in hot springs, where CO3/HCO3 ≪ 1, nahcolite precipitates instead of trona, which forms later via partial dissolution of nahcolite. Precipitation of nahcolite is possible only at lower pH values (pCO2 higher than −2.7) explaining the distribution of trona and nahcolite in current lakes and the stratigraphic sequences. Later, during evaporation, thermonatrite precipitates, normally at the same time as halite, at a very high pH (>11.2) after significant depletion of HCO3− due to trona precipitation. The precipitation of these soluble minerals increases the pH of the brine and is the main factor contributing to the hyperalkaline and hypersaline character of the lakes. Villiaumite, sylvite, alkaline earth carbonates, fluorapatite and silica are also predicted to precipitate, but most of them have not been observed in evaporation experiments, either because of the small amount of precipitates produced, kinetic effects delaying the nucleation of some phases, or by biologically induced effects in the lake chemistry that are not considered in our calculations. Even in these cases, the chemical composition in the corresponding ions allows for discussion on their accumulation and the eventual precipitation of these phases. The coupling of in-situ and ex-situ experiments and geochemical modelling is key to understanding the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and other extraterrestrial bodies. KW - Crystallization sequence KW - Hydrochemical evolution KW - Alkaline brines KW - Sodium carbonate minerals KW - Soda lakes KW - Evaporite deposits PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568431 SN - 0009-2541 VL - 616 SP - 1 EP - 13 PB - Elsevier CY - New York, NY AN - OPUS4-56843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Ryll, T. W. A1 - Buzanich, Ana Guilherme A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Phase stability studies on transition metal phosphates aided by an automated synthesis N2 - Transition metal phosphates (TMPs) have attracted interest as materials for (electro-) catalysis, and electrochemistry due to their low-cost, stability, and tunability. In this work, an automated synthesis platform was used for the preparation of transition metal phosphate crystals to efficiently explore the multidimensional parameter space, determining the phase selection, crystal sizes, shapes. By using X-ray diffraction and spectroscopy-based methods and electron microscopy imaging, a complete characterization of the phase stability fields, phase transitions, and crystal morphology/sizes was achieved. In an automated three-reactant synthesis, the individual effect of each reactant species NH4+, M2+, and PO43- on the formation of transition metal phosphate phases: M-struvite NH4MPO4·6H2O, M-phosphate octahydrate M3(PO4)2·8H2O with M = Ni, Co and an amorphous phase, was investigated. The NH4+ concentration dictates the phase composition, morphology, and particle size in the Ni-system (crystalline Ni-struvite versus amorphous Ni-PO4 phase), whereas in the Co-system all reactant species - NH4+, Co2+, and PO43- - influence the reaction outcome equivalently (Co-struvite vs. Co-phosphate octahydrate). The coordination environment for all crystalline compounds and of the amorphous Ni-PO4 phase was resolved by X-ray absorption spectroscopy, revealing matching characteristics to its crystalline analogue, Ni3(PO4)2·8H2O. The automated synthesis turned out to be significantly advantageous for the exploration of phase diagrams due to its simple modularity, facile traceability, and enhanced reproducibility compared to a typical manual synthesis. KW - Automated synthesis KW - Phase diagrams KW - Transition metals KW - Phosphates KW - Local structure KW - Struvite PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-579151 VL - 25 IS - 30 SP - 4333 EP - 4344 PB - CrystEngComm CY - London AN - OPUS4-57915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Somasundaram, S. K. A1 - Buzanich, Ana A1 - Emmerling, Franziska A1 - Krishnan, S. A1 - Senthilkumar, K. A1 - Joseyphus, R.J. T1 - New insights into pertinent Fe-complexes for the synthesis of iron via the instant polyol process N2 - Chemically synthesized iron is in demand for biomedical applications due to its large saturation magnetization compared to iron oxides. The polyol process, suitable for obtaining Co and Ni particles and their alloys, is laborious in synthesizing Fe. The reaction yields iron oxides, and the reaction pathway remains unexplored. This study shows that a vicinal polyol, such as 1,2-propanediol, is suitable for obtaining Fe rather than 1,3-propanediol owing to the formation of a reducible Fe intermediate complex. X-ray absorption spectroscopy analysis reveals the ferric octahedral geometry and tetrahedral geometry in the ferrous state of the reaction intermediates in 1,2-propanediol and 1,3-propanediol, respectively. The final product obtained using a vicinal polyol is Fe with a γ-Fe2O3 shell, while the terminal polyol is favourable for Fe3O4. The distinct Fe–Fe and Fe–O bond lengths suggest the presence of a carboxylate group and a terminal alkoxide ligand in the intermediate of 1,2-propanediol. A large Fe–Fe bond distance suggests diiron complexes with bidentate carboxylate bridges. Prominent high-spin and low-spin states indicate the possibility of transition, which favors the reduction of iron ions in the reaction using 1,2-propanediol. KW - XAS KW - Nanoparticle PY - 2023 U6 - https://doi.org/10.1039/D3CP01969A SN - 1463-9076 VL - 25 IS - 33 SP - 21970 EP - 21980 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 U6 - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Bhattacharya, Biswajit A1 - de Oliveira Guilherme Buzanich, Ana A1 - Fink, Friedrich A1 - Feldmann, Ines A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Thermally processed Ni-and Co-struvites as functional materials for proton conductivity N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1−x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1−x-struvites exhibit high surface areas and pore volumes (240 m2 g−1 and 0.32 cm−3 g−1 for Mg and 90 m2 g−1 and 0.13 cm−3 g−1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis. KW - Struvite KW - Phosphates KW - Transition metals KW - Proton conductivity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575862 SN - 1477-9226 SP - 1 EP - 13 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, D. A1 - Ahmad, S. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Ghosh, S. T1 - Stress and light sensitive dual-mechanical property of acylhydrazone crystal N2 - Mechanically dual-responsive molecular crystals have gained ubstantial interest among researchers due to their significant applications in various fields. However, incorporation of disparate mechanical responses in the same crystalline material is still a challenging issue and is continuously being explored. Here, we report long acicular crystals derived from 4-bromobenzhydrazide and 9-anthraldehyde exhibit both stressinduced mechanical bending and blue-light induced photomechanical bending. Furthermore, the crystals show thermal back isomerization upon gradual heating. These two distinct mechanical responses in the crystalline phase have been studied and their structure–property correlation have been established. KW - Light sensitive crystal KW - Mechanical flexibility KW - Organic crystal PY - 2023 U6 - https://doi.org/10.1039/d3ce00296a VL - 25 IS - 21 SP - 3237 EP - 3244 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584924 SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584766 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardes, C. E. S. A1 - Feliciano, I.O. A1 - Naese, Christoph A1 - Emmerling, Franziska A1 - Minas da Piedade, M. T1 - Energetics of dehydroepiandrosterone polymorphs I and II from solution and drop-sublimation Calvet microcalorimetry measurements N2 - The lattice enthalpies and monotropic relationship of two dehydroepiandrosterone (DEHA) polymorphs (forms I and II) were evaluated through a combination of differential scanning calorimetry (DSC), isothermal solution microcalorimetry, and drop-sublimation Calvet microcalorimetry experiments. The standard molar enthalpy of transition between both forms was determined as ΔtrsHom (II→I, 298.15 K) = - 0.90 ± 0.07 kJ mol-1 and ΔtrsHom (II→I, 417.8 K) = - 1.7 ± 1.0 kJ mol- 1, from measurements of standard molar enthalpies of solution in dimethyl sulfoxide and enthalpies of fusion, respectively. Drop-sublimation Calvet microcalorimetry experiments on form I led to ΔsubHom (cr I, 298.15 K) = 132.0±3.3 kJ mol - 1. This result, when combined with the more precise ΔtrsHom (II→I) value obtained by solution calorimetry, afforded ΔsubHom (cr II, 298.15 K) = 131.1±3.3 kJ mol - 1. The overall data indicate that on enthalpic grounds form I is more stable than form II from 298.15 K up to fusion. This conclusion, and the fact that DSC experiments indicated that form I has also a considerably higher temperature fusion, namely, Tfus(cr I)= 422.5±0.2 K and Tfus(cr II) = 413.1±0.2 K, suggest that the two polymorphs are monotropically related. KW - Calorimetry KW - Polymorphism KW - Enthalpy of solution KW - Enthalpy of sublimation KW - Thermochemistry KW - Lattice enthalpy PY - 2023 U6 - https://doi.org/10.1016/j.jct.2023.107137 SN - 0021-9614 SN - 1096-3626 VL - 186 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-58418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bui, M. A1 - Hoffmann, K. F. A1 - Braun, T. A1 - Riedel, S. A1 - Heinekamp, Christian A1 - Scheurell, K. A1 - Scholz, G. A1 - Stawski, Tomasz A1 - Emmerling, Franziska T1 - An Amorphous Teflate Doped Aluminium Chlorofluoride: A Solid Lewis-Superacid for the Dehydrofluorination of Fluoroalkanes N2 - Ananion-dopedaluminiumchlorofluoride AlCl0.1F2.8(OTeF5)0.1(ACF-teflate) was synthesized.The material contains pentafluor-oorthotellurate(teflate)groups, which mimic fluoride ions electronically, but are sterically more demanding. They are embedded into the amorphous structure. The latter was studied by PDF analysis, EXAFS data and MAS NMR spectroscopy. The mesoporous powder is a Lewis superacid, and ATR-IR spectra of adsorbed CD3CN reveal a blue-shift of the adsorption band by73 cm-1, which is larger than the shift for SbF5. Remarkably,ACF-teflate catalyzes dehydrofluorination reactions of mono-fluoroalkanes to yield olefins in C6D6. In these cases,no Friedel-Crafts products were formed. KW - Aluminium fluorides KW - Aluminium teflates KW - C-F bond activation KW - Lewis superacids KW - Silanes PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572290 SN - 1867-3880 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-57229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manoharan, Deepak A1 - Ranjan, Subham A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit A1 - Takamizawa, Satoshi A1 - Ghosh, Soumyajit T1 - Elasto-plastic behaviour with reversible thermosalient expansion in acrylonitrile-based organic crystals N2 - Crystalline materials that exhibit reversible mechanical responses upon exposure to external stimuli have garnered significant attention owing to their potential applications in various fields. Herein, we report a crystal of (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-bromophenyl)acrylonitrile) (DSBr), which displays simultaneous elasto-plastic behaviour and reversible thermosalient effects. While elasto-plastic behaviour is attributed to underlying packing features, reversible thermosalient expansion is attributed to uniaxial expansion mediated by heat. Exceptional length increase and contraction upon cooling is due to the restorative nature of weak interactions through a cooperative effect. The cooperative movement of molecules is reflected in the unidirectional expansion of the habit plane. Thermosalient reversible expansion–contraction in elasto-plastic crystals have not been discussed in the literature so far. Detailed analysis reported herein provides a comprehensive understanding of the underlying mechanism of flexibility and thermosalient responses. This crystal's unique blend of reversible thermal expansion with flexibility holds substantial promise for applications in flexible thermal actuators. KW - Materials Chemistry KW - General Chemistry PY - 2024 U6 - https://doi.org/10.1039/D3TC04272C SN - 2050-7526 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietzmann, Simon A1 - Mehmood, Asad A1 - Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Fellinger, Tim-Patrick A1 - Thomas, A. T1 - Characterization of Solid-State Complexes by XAS N2 - Atomically dispersed metal-nitrogen doped carbons (M-N-C) are promising catalysts for the activation of small molecules such as O2 and CO2. These single atom catalysts (SAC) operate at the interface between homogenous and heterogenous catalysts. Currently, many examples of M-N-C are known with good oxygen reduction reaction activity but lacking a controlled synthesis of the specific active sites of the precatalyst. Recently, our group facilitated the synthesis of pure pyrrolic M-N4 sites using Zn ions as imprinters.[1] These amorphous materials obtained by active site imprinting method are characterized at the BAMline (Bessy II) by X-ray absorption spectroscopy (XAS). In-situ/operando measurements will be crucial in future work for a better understanding of the dynamic changes of the active site. T2 - InSynX Workshop 2023 CY - Sao Paulo, Brazil DA - 06.03.2023 KW - Solid-State Complexes PY - 2023 AN - OPUS4-58933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goswami, Juli Nanda A1 - Haque, Najirul A1 - Seikh, Asiful H. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Bar, Nimai A1 - Ifseisi, Ahmad A. A1 - Biswas, Surajit A1 - Dolai, Malay T1 - Carboxylative cyclization of propargyl alcohols with carbon dioxide for the synthesis of α-alkylidene cyclic carbonates in presence of Co(III) schiff base complex catalyst N2 - A cobalt(III) complex, [Co(L)3](DMF) (1) of Schiff base ligand HL, 2-((E)-(benzylimino)methyl)-4-bromophenol is prepared and single crystal X-ray structural analysis have also been performed. The structures of complex 1 showed hexa-coordinated mononuclear systems that adopt octahedral geometry. The complex has also exhibited the supramolecular networks through non-covalent interactions like H-bonding, C–Hπ stacking. Moreover, the complex 1 is very effective in the catalytic fixation of carbon dioxide in propergyl alcohols to produce α-alkylidene cyclic carbonates. The catalytic production of α-alkylidene cyclic carbonates have been carried out through carboxylative cyclization of propargyl alcohols using CO2 balloon of 1 atm pressure at 80 ◦C. Solvent free condition (green synthesis) made this catalytic protocol eco-friendly towards the environment. Utilizing various substrates of propargyl alcohols moderate to high percentage yield (62–95%) of respective α-alkylidene cyclic carbonates product have been isolated over this catalytic reaction. Besides, the theoretical calculations (DFT) was performed for the prediction of probable mechanism of the catalytic reaction KW - Catalytic fixation of carbon dioxide KW - Carboxylative cyclization of propargyl alcohols KW - Cobalt (III) Schiff base complex KW - X-ray crystal analysis PY - 2024 U6 - https://doi.org/10.1016/j.molstruc.2023.136868 SN - 0022-2860 VL - 1296 IS - Part 1 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemsistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Combination of complementary methods For in situ studies N2 - This talk explores the synergistic application of complementary synchrotron methods for in situ investigations, providing a comprehensive approach to enhance analytical capabilities in materials research and characterization. T2 - INSYNX - DEUTSCH-BRASILIANISCHER WORKSHOP ON BREAKING BOUNDARIES OF IN SITU SYNCHROTRON X-RAY METHODS CY - Sao Paulo, Brazil DA - 06.03.2023 KW - In situ KW - Synchrotron PY - 2023 AN - OPUS4-59025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry has become a compelling method for producing (new) molecule s and mate-rials, but the inner workings of the milling jars remain a fascinating mystery. Advances in this field include tailor-made chemical systems and real-time revelations using techniques such as XRD and Raman spectroscopy. This talk will discuss our recent progress in using X-ray diffraction and sophisticated spectros-copy to observe reactions in various material systems during ball milling and extrusion in real-time. The complexity of mechanochemical reactions spans multiple scales and requires a holistic ap-proach. The categorisation of reactions by investigative methods precedes the exploration of real-time analysis that reveals macroscopic processes using synchrotron techniques. During this exploration, one resounding realisation remains: We are on the threshold of under-standing. The complexity of mechanochemistry requires a collective effort, drawing on the ex-pertise of a diverse community. As we unravel the web of mechanochemical phenomena, we acknowledge the collaborative nature of this ongoing journey. T2 - CMCC Mechanochemistry Discussions CY - Online meeting DA - 21.09.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Connecting the nodes: networks and networking N2 - This talk explores the intricate connections between scientists, focusing on the networking dynamics within the realm of metal-organic frameworks (MOFs). The study delves into the collaborative networks formed among scientists, shedding light on the synergistic relationships that contribute to advancements in MOF research. T2 - WINS School 2023 Frameworks and networks CY - Blossin, Germany DA - 02.06.2023 KW - Metal-organic frameworks PY - 2023 AN - OPUS4-59028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Pimentel, Carlos A1 - Montes-Hernández, German A1 - Kochovski, Zdravko A1 - Bienert, Ralf A1 - Weimann, Karin A1 - Emmerling, Franziska A1 - Scoppola, Ernesto A1 - Van Driessche, Alexander E.S. T1 - Solution-driven processing of calcium sulfate: The mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Here, we show that calcium sulfate dihydrate (gypsum) can be directly, rapidly and reversibly converted to calcium sulfate hemihydrate (bassanite) in high salinity solutions (brines). The optimum conditions for the efficient production of bassanite in a short time (<5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the better-known behaviour of the bassanite phase in low-salt environments. In low-salinity aqueous solutions, bassanite is considered to be metastable with respect to gypsum and anhydrite, and therefore gypsum-to-bassanite conversion does not occur in pure water. Interestingly, the high-salinity transformation of gypsum-to-bassanite has been reported by many authors and used in practice for several decades, although its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures was inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline phase for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. KW - Industrial and Manufacturing Engineering KW - Strategy and Management KW - General Environmental Science KW - Renewable Energy, Sustainability and the Environment KW - Building and Construction KW - Calcium sulfate KW - Gypsum KW - Bassanite KW - Scattering KW - Raman KW - In situ KW - Synchrotron KW - BESSY KW - MySpot PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594698 UR - https://www.sciencedirect.com/science/article/pii/S0959652624004591#appsec1 SN - 0959-6526 VL - 440 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-59469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zuffa, Caterina A1 - Cappuccino, Chiara A1 - Casali, Lucia A1 - Emmerling, Franziska A1 - Maini, Lucia T1 - Liquid reagents are not enough for liquid assisted grinding in the synthesis of (AgBr)(n-pica) n N2 - This study investigates the mechanochemical reactions between AgBr 3-picolylamine and 4-picolylamine. The use of different stoichiometry ratios of the reagents allows [(AgBr)(n-pica)]n and [(AgBr)2(n-pica)]n to be obtained, and we report the new structures of [(AgBr)2(3-pica)]n and [(AgBr)2(4-pica)]n which are characterized by the presence of the following: (a) infinite inorganic chains, (b) silver atom coordinated only by bromide atoms and (c) argentophilic interactions. Furthermore, we studied the interconversion of [(AgBr)(n-pica)]n/[(AgBr)2(n-pica)]n by mechanochemical and thermal properties. The in situ experiments suggest that [(AgBr)(3-pica)]n is kinetically favoured while [(AgBr)2(3-pica)]n is converted into [(AgBr)(3-pica)]n only with a high excess of the ligand. Finally, the liquid nature of the ligands is not sufficient to assist the grinding process, and the complete reaction is observed with the addition of a small quantity of acetonitrile. KW - Mechanochemistry KW - Complex PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594755 SN - 1463-9076 SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Why shaken, not stirred, makes the difference: insights into mechanochemical reactions from in situ investigations N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (poly-morphic) cocrystals[1,3], metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved. Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - GdCh Vortrag Universität Potsdam CY - Potsdam, Germany DA - 05.06.2023 KW - Mechanochemistry KW - In Situ PY - 2023 AN - OPUS4-58982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593433 SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Prinz, Carsten A1 - Zimathies, Annett A1 - Emmerling, Franziska T1 - Experimantal raw data sets associated with certified reference material BAM-P116 (titanium dioxide) for comparison of nitrogen and argon sorption, available in the universal adsorption information format (AIF) N2 - These data sets serve as models for calculating the specific surface area (BET method) using gas sorption in accordance with ISO 9277. The present measurements were carried out with nitrogen at 77 Kelvin and argon at 87 Kelvin. It is recommended to use the following requirements for the molecular cross-sectional area: Nitrogen: 0.1620 nm² Argon: 0.1420 nm² Titanium dioxides certified with nitrogen sorption and additionally measured with argon for research purposes were used as sample material. The resulting data sets are intended to serve as comparative data for own measurements and show the differences in sorption behaviour and evaluations between nitrogen and argon. These data are stored in the universal AIF format (adsorption information file), which allows flexible use of the data. KW - Physisorption KW - Surface area KW - AIF KW - Argon KW - Nitrogen PY - 2023 U6 - https://doi.org/10.5281/zenodo.10199628 PB - Zenodo CY - Geneva AN - OPUS4-59102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Emmerling, Franziska A1 - Michalchuk, Adam A. L. T1 - The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions N2 - We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre‐activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid‐state mechanochemistry. KW - General Chemistry KW - Catalysis KW - Organic Chemistry PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589219 SN - 0947-6539 SP - e202302150 PB - Wiley AN - OPUS4-58921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Edzards, Joshua A1 - Saßnick, Holger-Dietrich A1 - Buzanich, Ana Guilherme A1 - Valencia, Ana M. A1 - Emmerling, Franziska A1 - Beyer, Sebastian A1 - Cocchi, Caterina T1 - Effects of Ligand Substituents on the Character of Zn-Coordination in Zeolitic Imidazolate Frameworks N2 - Due to their favorable properties and high porosity, zeolitic imidazolate frameworks (ZIFs) have recently received much limelight for key technologies such as energy storage, optoelectronics, sensorics, and catalysis. Despite widespread interest in these materials, fundamental questions regarding the zinc coordination environment remain poorly understood. By focusing on zinc(II)2-methylimidazolate (ZIF-8) and its tetrahedrally coordinated analogues with Br-, Cl-, and H-substitution in the 2-ring position, we aim to clarify how variations in the local environment of Zn impact the charge distribution and the electronic properties of these materials. Our results from densityfunctional theory confirm the presence of a Zn coordinative bond with a large polarization that is quantitatively affected by different substituents on the organic ligand. Moreover, our findings suggest that the variations in the Zn coordination induced by the functionalization have a negligible effect on the electronic structure of the considered compounds. On the other hand, halogen terminations of the ligands lead to distinct electronic contributions in the vicinity of the frontier region which ultimately reduce the band gap size by a few hundred millielectron volts. Experimental results obtained from X-ray absorption spectroscopy (Zn K-edge) confirm the trends predicted by theory and, together with them, contribute to a better understanding of the structure−property relationships that are needed to tailor ZIFs for target applications. KW - Surfaces KW - Physical and Theoretical Chemistry KW - General Energy KW - Electronic KW - Coatings and Films KW - Optical and Magnetic Materials PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589117 SN - 1932-7447 VL - 127 IS - 43 SP - 21456 EP - 21464 PB - American Chemical Society (ACS) AN - OPUS4-58911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Retzmann, Anika A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Nonclassical Crystallization Pathway of Transition Metal Phosphate Compounds N2 - Here, we elucidate nonclassical multistep crystallization pathways of transition metal phosphates from aqueous solutions. We followed precipitation processes of M-struvites, NH4MPO4·6H2O, and M-phosphate octahydrates, M3(PO4)2·8H2O, where M = Ni, Co, or NixCo1–x, by using in situ scattering and spectroscopy-based techniques, supported by elemental mass spectrometry analyses and advanced electron microscopy. Ni and Co phosphates crystallize via intermediate colloidal amorphous nanophases, which change their complex structures while agglomerating, condensing, and densifying throughout the extended reaction times. We reconstructed the three-dimensional morphology of these precursors by employing cryo-electron tomography (cryo-ET). We found that the complex interplay between metastable amorphous colloids and protocrystalline units determines the reaction pathways. Ultimately, the same crystalline structure, such as struvite, is formed. However, the multistep process stages vary in complexity and can last from a few minutes to several hours depending on the selected transition metal(s), their concentration, and the Ni/Co ratio. KW - Non-classical crystallization theory KW - Transition metals KW - Phosphates KW - Amorphous phases KW - Intermediate phases PY - 2023 U6 - https://doi.org/10.1021/acs.chemmater.3c02346 SN - 1520-5002 VL - 35 IS - 24 SP - 10645 EP - 10657 PB - American Chemical Society (ACS) CY - Washington D.C. AN - OPUS4-59135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Chewle, S. A1 - Weber, M. T1 - Revealing Kinetics of Paracetamol Crystallization Using Time Resolved Raman Spectroscopy, Orthogonal Time-Lapse Photography, and Non-Negative Matrix Factorization (OSANO) N2 - Crystallization is a complex phenomenon with farreaching implications for the production and formulation of active pharmaceutical ingredients. Understanding this process is critical for achieving control over key physicochemical properties that can affect, for example, the bioavailability and stability of a drug. In this study, we were able to reveal intricate and diverse dynamics of the formation of metastable intermediates of paracetamol crystallization varying with the choice of solvent. We demonstrate the efficacy of our novel approach utilizing an objective function-based non-negative matrix factorization technique for the analysis of time-resolved Raman spectroscopy data, in conjunction with time-lapse photography. Furthermore, we emphasize the crucial importance of integrating Raman spectroscopy with supplementary experimental instrumentation for the mathematical analysis of the obtained spectra. KW - Polymorphism KW - Crystallization KW - Measurement KW - Algorithm PY - 2023 U6 - https://doi.org/10.1021/acs.cgd.3c00617 SN - 1528-7483 VL - 23 SP - 6737 EP - 6746 PB - ACS Publications AN - OPUS4-58193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Yasuda, N. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Mechanistic Investigation of an Elastically Flexible Organic Crystal N2 - Mechanical flexibility in molecular crystals is a fascinating behavior with potential for developing advanced technologies. However, the phenomenon of mechanical bending is poorly understood. We explore for the first time the atomistic origin of elastic bending in a single component organic crystal using a combination of μ-focus synchrotron X-ray diffraction and ab initio simulation. KW - Flexible crystals KW - DFT calculation KW - Bending mechanism PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581949 SN - 1528-7483 VL - 23 IS - 9 SP - 6244 EP - 6249 PB - ACS Publications AN - OPUS4-58194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Guilherme Buzanich, Ana A1 - Ahrens, M. A1 - Braun, T. A1 - Emmerling, Franziska T1 - An amorphous Lewis-acidic zirconium chlorofluoride as HF shuttle: C–F bond activation and formation N2 - An exceptional HF transfer reaction by C–F bond activation of fluoropentane and a subsequent hydrofluorination of alkynes at room temperature is reported. An amorphous Lewis-acidic Zr chlorofluoride serves as heterogeneous catalyst, which is characterised by an eightfold coordination environment at Zr including chlorine atoms. The studies are seminal in establishing sustainable fluorine chemistry. KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-582249 SN - 1359-7345 VL - 59 IS - 75 SP - 11224 EP - 11227 PB - RSC CY - Cambridge AN - OPUS4-58224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Wolf, Jakob A1 - Meyer, Klas A1 - Kern, S. A1 - Angelone, D. A1 - Leonov, A. A1 - Cronin, L. A1 - Emmerling, Franziska T1 - Standardization and control of Grignard reactions in a universal chemical synthesis machine using online NMR T1 - Standardisierung und Kontrolle von Grignard-Reaktionen mittels Online-NMR in einer universellen chemischen Syntheseplattform N2 - A big problem with the chemistry literature is that it is not standardized with respect to precise operational parameters, and real time corrections are hard to make without expert knowledge. This lack of context means difficult reproducibility because many steps are ambiguous, and hence depend on tacit knowledge. Here we present the integration of online NMR into an automated chemical synthesis machine (CSM aka. “Chemputer” which is capable of small-molecule synthesis using a universal programming language) to allow automated analysis and adjustment of reactions on the fly. The system was validated and benchmarked by using Grignard reactions which were chosen due to their importance in synthesis. The system was monitored in real time using online-NMR, and spectra were measured continuously during the reactions. This shows that the synthesis being done in the Chemputer can be dynamically controlled in response to feedback optimizing the reaction conditions according to the user requirements. N2 - Ein Problem der chemischen Literatur ist die fehlende Standardisierung bezüglich genauer Bedingungen, auch Echtzeit-Korrekturen sind ohne Expertenwissen nur schwer möglich. Dieser Mangel an Details erschwert experimentelle Reproduzierbarkeit, da Schritte oft mehrdeutig sind und daher von implizitem Wissen abhängen. Hier präsentieren wir die Integration von Online-NMR Spektroskopie in eine automatisierte chemische Syntheseplattform (CSM aka. “Chemputer”, unter Verwendung einer universellen Programmiersprache zur Synthese kleiner Moleküle fähig), um eine automatisierte Analyse und Anpassung von Reaktionen im laufenden Betrieb zu ermöglichen. Das System wurde anhand von Grignard-Reaktionen, die aufgrund ihrer Bedeutung für die Synthese ausgewählt wurden, validiert und einem Härtetest unterzogen. Synthesen wurden in Echtzeit mit Online-NMR überwacht, und die Spektren wurden während der Reaktionen kontinuierlich aufgenommen und analysiert. Dies zeigt, dass der Chemputer dynamisch mittels einer Regelung kontrolliert werden kann, um die Reaktionsbedingungen entsprechend den Anforderungen des Benutzers zu optimieren. KW - Grignard reaction KW - NMR spectroscopy KW - Process analytical technology KW - Process control KW - Grignard-Reaktion KW - NMR-Spektroskopie KW - Prozessanalytik KW - Prozesskontrolle PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531260 SN - 1521-3773 SN - 1433-7851 N1 - Bibliografische Angaben für die deutsche Version: Angewandte Chemie 2021, Jg. 133, S. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 - Bibliographic information for the German version: Angewandte Chemie 2021, vol. 133, p. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 VL - 60 IS - 43 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53126 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, O. A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. KW - Mechanochemistry KW - In situ Raman KW - Large-scale processing KW - Metal−organic frameworks KW - Twin-screw extrusion (TSE) PY - 2023 U6 - https://doi.org/10.1021/acssuschemeng.2c07509 SN - 2168-0485 VL - 11 IS - 13 SP - 5175 EP - 5183 PB - ACS Publications AN - OPUS4-57366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai A1 - Batzdorf, Lisa A1 - Kraume, M. A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - Online-NMR-Methoden zur Analyse des Auflösungsverhaltens von pharmazeutischen Cokristallen T2 - 8. Kolloquium Arbeitskreis Prozessanalytik CY - Berlin, Germany DA - 2012-12-03 KW - Quantitative Online-NMR-Spektroskopie KW - Cokristalle KW - Auflösungskinetik PY - 2012 SN - 978-3-9815360-1-0 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. IS - P12 SP - 40 AN - OPUS4-28267 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Zientek, Nicolai A1 - Rump, Doreen A1 - Fischer, Franziska A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Make and break - Facile synthesis of cocrystals and comprehensive dissolution studies N2 - Mechanochemistry is increasingly used as a ‘green alternative’ for synthesizing various materials including pharmaceutical cocrystals. Herein, we present the mechanochemical synthesis of three new cocrystals containing the API carbamazepine (cocrystals CBZ:Indometacin 1:1, CBZ:Benzamide 1:1, and CBZ:Nifedipine 1:1). The mechanochemical reaction was investigated in situ documenting a fast and complete reaction within one minute. Online NMR spectroscopy proved the direct influence of the dissolution behaviour of the coformers to the dissolution behaviour of the API carbamazepine. The dissolution behaviour of the organic cocrystals is compared to the behaviour of the pure drug indicating a general applicability of this approach for detailed cocrystal dissolution studies. KW - Cocrystals KW - Carbamazepine KW - Mechanochemistry KW - Powder diffraction KW - Online NMR spectroscopy PY - 2017 U6 - https://doi.org/10.1016/j.molstruc.2016.11.063 SN - 0022-2860 SN - 1872-8014 VL - 1133 SP - 18 EP - 23 AN - OPUS4-38664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Bienert, M. A1 - Gugin, Nikita A1 - Emmerling, Franziska A1 - Maiwald, Michael T1 - A database to select affordable MOFs for volumetric hydrogen cryoadsorption considering the cost of their linkers N2 - Physical adsorption at cryogenic temperature (cryoadsorption) is a reversible mechanism that can reduce the pressure of conventional compressed gas storage systems. Metal–organic framework (MOF) materials are remarkable candidates due to the combination of high specific surface area and density which, in some cases, provide a high volumetric storage capacity. However, such extensive use of MOFs for this application requires the selection of affordable structures, easy to produce and made from feasible metallic and organic components. Herein, we introduce a MOF database detailing the crystallographic and porous properties of 3600 existing MOFs made from industrially relevant metals and their organic composition. The comparison of the available minimum costs of linkers allowed the creation of a database to select affordable structures with high potential for volumetric hydrogen storage by cryoadsorption, considering their composition based on individual or mixed building blocks. A user inter� face, available online, facilitates the selection of MOFs based on the properties or names of structures and linkers. KW - MOF´s PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-583619 VL - 4 IS - 18 SP - 4226 EP - 4237 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502825 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -