TY - JOUR A1 - Boschmann Käthler, C. A1 - Angst, U. A1 - Ebell, Gino A1 - Elsener, B. T1 - Chloride-induced reinforcement corrosion in cracked concrete: the influence of time of wetness on corrosion propagation N2 - Literature data on the influence of concrete cracks on corrosion propagation of reinforcing steel are contradictory. This might be due to very different exposure and test conditions but also to a lack of time-resolved data in cyclic wetting–drying exposure. Here, the influence of the environmental conditions on the corrosion rates in cracked concrete is studied experimentally. The results show that the corrosion rate in cracked concrete depends on the duration of wetting and drying phases and the relative humidity (RH) during the drying phase. The lower the ambient RH in the drying phase, the faster the cracks dry, which depresses the corrosion rate in the periods between the wetting events. A model is proposed to estimate corrosion rates in cracked concrete cyclic wetting/drying exposure. KW - Korrosion KW - Corrosion KW - Concrete PY - 2020 U6 - https://doi.org/10.1080/1478422X.2020.1789371 SP - 1 EP - 11 PB - Taylor Francis Online CY - London AN - OPUS4-50986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Angst, U.M. A1 - Geiker, M.R. A1 - Alonso, M.C. A1 - Polder, R. A1 - Isgor, O.B. A1 - Elsener, B. A1 - Wong, H. A1 - Michel, A. A1 - Hornbostel, K. A1 - Gehlen, C. A1 - François, R. A1 - Sanchez, M. A1 - Criado, M. A1 - Sørensen, H. A1 - Hansson, C. A1 - Pillai, R. A1 - Mundra, Shishir A1 - Gulikers, J. A1 - Raupach, M. A1 - Pacheco, J. A1 - Sagüés, A. T1 - The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI N2 - The steel–concrete interface (SCI) is known to influence corrosion of steel in concrete. However, due to the numerous factors affecting the SCI—including steel properties, concrete properties, execution, and exposure conditions—it remains unclear which factors have the most dominant impact on the susceptibility of reinforced concrete to corrosion. In this literature review, prepared by members of RILEM technical committee 262-SCI, an attempt is made to elucidate the effect of numerous SCI characteristics on chloride-induced corrosion initiation of steel in concrete. We use a method to quantify and normalize the effect of individual SCI characteristics based on different literature results, which allows comparing them in a comprehensive context. It is found that the different SCI characteristics have received highly unbalanced research attention. Parameters such as w/b ratio and cement type have been studied most extensively. Interestingly, however, literature consistently indicates that those parameters have merely a moderate effect on the corrosion susceptibility of steel in concrete. Considerably more pronounced effects were identified for (1) steel properties, including metallurgy, presence of mill scale or rust layers, and surface roughness, and (2) the moisture state. Unfortunately, however, these aspects have received comparatively little research attention. Due to their apparently strong influence, future corrosion studies as well as developments towards predicting corrosion initiation in concrete would benefit from considering those aspects. Particularly the working mechanisms related to the moisture conditions in microscopic and macroscopic voids at the SCI is complex and presents major opportunities for further research in corrosion of steel in concrete. KW - Steel-concrete interface KW - Interfacial transition zone KW - Durability KW - Corrosion KW - Inhomogeneity KW - Variability PY - 2019 U6 - https://doi.org/10.1617/s11527-019-1387-0 VL - 52 IS - 4 SP - 88-1 EP - 88-25 PB - Springer Nature AN - OPUS4-48689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -