TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - In situ synchrotron X-ray radiation analysis of hydrogen behavior in stainless steel subjected to continuous heating N2 - Hydrogen generally causes lattice distortions and phase transformations when introduced into a metallic crystal lattice. For the investigations reported in this contribution, hydrogen thermal desorption analysis has been carried out to observe the influence of hydrogen desorption on the lattice of super martensitic stainless steel during continuous heating. The lattice expansion parameter and the phase transformations have been monitored during the thermal desorption process, and the influence of hydrogen on such characteristics has been evaluated. It was found that hydrogen has a significant influence on both the lattice parameter and on the thermal expansion. However, hydrogen has no influence on phase transformation during thermal desorption. The hydrogen's desorption behavior in this process was also observed and it turned out that hydrogen desorbs in two stages, i.e., firstly diffusible hydrogen and trapped hydrogen afterward. KW - Synchrotron radiation KW - In situ KW - Hydrogen PY - 2012 U6 - https://doi.org/10.1007/s10853-012-6489-9 SN - 0022-2461 SN - 1573-4803 VL - 47 IS - 15 SP - 5879 EP - 5885 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-26179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ben-Hamu, G. A1 - Eliezer, D. A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet N2 - Welding of AZ31B magnesium alloy was carried out using gas-tungsten arc (GTA) welding. The microstructure and the corrosion behavior of welded magnesium AZ31B alloy were investigated. ac and dc polarization tests were carried out on the welded Mg sheet. The microstructure was examined using optical and electron microscopy (TEM and SEM), X-ray analysis and EDS. Scanning Kelvin probe force microscopy (SKPFM) was used in order to measure the Volta potential of different phases relative to the matrix. The results showed that the GTA process effected both the microstructure and the corrosion behavior. These results can be explained by the effects of the process on microstructure of AZ31B Mg alloy sheet such as grain size and precipitates caused by the change in precipitation and recrystallization behavior. KW - AZ31B KW - GTA weld KW - Microstructure KW - Corrosion behavior KW - SKPFM KW - Intermetallics PY - 2007 U6 - https://doi.org/10.1016/j.msea.2006.12.122 SN - 0921-5093 SN - 1873-4936 VL - 452/453 SP - 210 EP - 218 PB - Elsevier CY - Amsterdam AN - OPUS4-15459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eliezer, D. A1 - Nissim, Y. A1 - Kannengießer, Thomas T1 - Effects of shielding with various hydrogen-argon mixtures on supermartensitic stainless steel TIG welds N2 - Eine Anzahl verschiedener Effekte ergibt sich aus der Anwesenheit von Wasserstoff während des Schweißens hochlegierter Stähle. Die Betriebsdauer von geschweißten Bauteilen ist außerdem stark von der Anwesenheit von Wasserstoff im Umgebungsmedium und der Anfälligkeit der verschiedenen Schweißnahtgefüge für eine Degradation ihrer Eigenschaften durch Wasserstoff abhängig. Als eine relative neue Werkstoffgeneration finden supermartensitische hoch legierte Stähle (Supermartensitic Stainless Steels - SMSS) zunehmend als Ersatz für teuere Legierungen insbesondere in der Öl- und Gasindustrie Verwendung. Als Konsequenz ihres martensitischen Gefüges sind diese Legierungen anfällig für eine wasserstoffunterstützte Rissbildung (Hydrogen Assisted Cracking - HAC). Der Widerstand von supermartensitischen Stählen gegen wasserstoffunterstützte Spannungsrisskorrosion (Hydrogen Assisted Stress Corrosion Cracking - HASCC) unter Sauergasbedingungen wurde vor allem für industrielle Einsatzzwecke extensiv untersucht. Solche Studien vornehmlich an Grundwerkstoffen basieren überwiegend auf Standard-Prüfverfahren. Dem gegenüber würde das grundsätzliche Verhalten von Wasserstoff in den Gefügen geschweißter supermartensitischer Stähle wenig untersucht. Die zentralen Gründe für die diesem Beitrag zugrunde liegende Studie waren daher, die Effekte des Wasserstoffs auf das Gefüge von Wolfram Inert Gas (WIG)-Schweißungen supermartensitischer Stähle und die entsprechenden Wasserstoff-Trapping-Mechanismen zu untersuchen. Die Wirkungen des Wasserstoffs auf die verschiedenen WIG-geschweißten Gefüge wurden mittels Röntgendiffraktometrie, Lichtmikroskopie und Rasterelektronenmikroskopie untersucht. Eine Anzahl von Verfahren wurde außerdem angewendet, um den absorbierten Wasserstoff quantitativ zu bestimmen. Die Wechselwirkung zwischen Wasserstoff mit den mikrostrukturellen Defekten und die Charakteristika der Wasserstoffdesorption wurden mittels Thermischer Desorptionsspektroskopie (TDS) und Trägergas-Heißextraktionen des Wasserstoffs (LECO Analyse) untersucht. Die Wirkung des Gefüges auf die Absorption und Desorption von Wasserstoff werden im Detail diskutiert. KW - Hydrogen assisted cold cracking KW - Supermartensit KW - XRD KW - TDS PY - 2010 U6 - https://doi.org/10.3139/120.110135 SN - 0025-5300 VL - 52 IS - 5 SP - 306 EP - 315 PB - Hanser CY - München AN - OPUS4-21335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - In situ analysis of hydrogen behaviour in stainless steels by high energy synchrotron radiation N2 - Hydrogen generally causes lattice distortions and phase transformations when introduced into a metal matrix. The present contribution provides a report of first in situ investigations of hydrogen effects on the lattice of the austenite and the martensite phase in a supermartensitic stainless steel using hard synchrotron radiation for respective energy dispersion diffraction measurements. Lattice distortions, such as the planar spacing expansion, have been monitored during the complete hydrogen effusion process over 24 h and are directly correlated to the dissolved hydrogen in the metal matrix. Among other results, it turned out that hydrogen at the introduced concentration level causes a reversible lattice expansion and after hydrogen effusion the lattice nearly regained its original dimensions. Hydrogen much more significantly affects the austenite phase with respect to lattice expansion than the martensite phase, but no phase transformations occur during the hydrogen desorption process. KW - Hydrogen diffusion KW - Solubility KW - Lattice distortions KW - Energy dispersive X-ray diffraction PY - 2011 U6 - https://doi.org/10.1016/j.msea.2010.10.090 SN - 0921-5093 SN - 1873-4936 VL - 528 IS - 3 SP - 1608 EP - 1614 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-22849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dabah, Eitan A1 - Kannengießer, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - Hydrogen interaction with residual stresses in steel studied by synchrotron X-ray diffraction N2 - The residual stress state in a material has an important role in the mechanism of cracking, induced or assisted by hydrogen. In this contribution, the beamline EDDI in BESSY II instrument in Berlin was used in order to investigate the influence of hydrogen upon the residual stresses state existing in a Supermartensitic stainless steel sample. The method used for investigating the residual stresses is the “sinus square ψ” method. This method involves the usage of high energy X-ray diffraction in order to measure the residual stress state and magnitude. It was found that hydrogen presence has a significant influence upon the magnitude of the residual stresses, as its value decreases with high hydrogen content. This effect is reversible, as hydrogen desorbs from the sample the residual stress magnitude gains its initial value before hydrogen charging. KW - Energy dispersive diffraction KW - Hydrogen embrittlement KW - Residual Stress KW - Supermartensitic Steel PY - 2014 U6 - https://doi.org/10.4028/www.scientific.net/MSF.772.91 SN - 0255-5476 VL - 772 SP - 91 EP - 95 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-29673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Holzlechner, Gerald A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel microstructure N2 - In the present work, the influence of deuterium on the microstructure of a duplex stainless steel type EN 1.4462 has been characterized by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) supported by scanning electron microscopy (SEM), focused ion beam (FIB), electron back scattered diffraction(EBSD) and energy dispersive x-ray (EDX) investigations. Characterization has been carried out before and after electrochemical charging with deuterium which has been used as a tracer, due to its similar behavior to hydrogen in the steel microstructure. In a first approach, the distribution of the deuterium occurring at temperatures above 58 °C has been visualized. Further it turned out that sub-surface micro blisters are formed in the ferrite-austenite interface, followed by the formation of needle shaped plates and subsequent cracking at the ferrite surface. In the austenite phase, parallel cracking alongside twins and hexagonal close packed (martensitic) regions has been observed. In both phases and even in the apparent interface, cracking has been associated with high deuterium concentrations, as compared to the surrounding undamaged microstructure. Sub-surface blistering in the ferrite has to be attributed to the accumulation and recombination of deuterium at the ferrite-austenite interface underneath the respective ferrite grains and after fast diffusing through this phase. Generally, the present application of chemometric imaging and structural analyses allows characterization of hydrogen assisted degradation at a sub-micron lateral resolution. KW - ToF-SIMS KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - SEM KW - FIB KW - EBSD PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0921509316310334 U6 - https://doi.org/10.1016/j.msea.2016.08.107 SN - 0921-5093 VL - 676 SP - 271 EP - 277 PB - Elsevier B.V. AN - OPUS4-37298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holtappels, Kai A1 - Kluge, Martin A1 - Gebauer, Marek A1 - Eliezer, D. T1 - Pressure resistance of glass capillaries for hydrogen storage N2 - Ein entscheidendes Problem neuer Wasserstofftechnologien ist die leichte und sichere Lagerung ausreichender Mengen an Wasserstoff insbesondere für Nutzung bei tragbaren oder mobilen Anwendungen. Eine neue und innovative Technologie basierend auf gebündelte Kapillaren wurde entwickelt. Diese Systeme garantieren eine sichere Speicherung, Lagerung und kontrollierte Freisetzung von Wasserstoff, obgleich Speicherdrücke bis 1200 bar angewendet werden. Die neue Technologie ermöglicht die Lagerung einer erheblich größeren Menge Wasserstoff als andere Systeme und übertraf bereits die Zielsetzung des DOE 2010. Es wird erwartet, die DOE-Zielsetzung für das Jahr 2015 bereits in naher Zukunft zu erreichen. Hauptaspekt für die Speichertechnologie ist die Druckfestigkeit der Glaskapillaren. Es ist weithin bekannt, dass besonders Quarz eine dreimal höhere Festigkeit als Stahl hat. Gleichzeitig ist die Dichte ungefähr dreimal niedriger, was bedeutet, dass viel weniger Material notwendig ist, um die gleiche Druckfestigkeit zu erreichen. Die Druckfestigkeit einzelner Kapillare ist in der Abhängigkeit der Materialien, der Abmessungen, der Wandstärke etc. ermittelt worden, um optimale Parameter für die "finalen" Kapillaren herauszufinden. KW - Wasserstoffspeicherung KW - Glasstruktur KW - Druckefestigkeit KW - Berstdruck PY - 2011 SN - 0025-5300 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. VL - 53 IS - 1-2 SP - 14 EP - 18 PB - Hanser CY - München AN - OPUS4-23043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silverstein, R. A1 - Sobol, Oded A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - Hydrogen behavior in SAF 2205 duplex stainless steel N2 - This paper describes austenitic-ferritic duplex stainless steels, SAF 2205, in the presence of hydrogen. The duplex stainless steels (DSS) properties include excellent resistance to stress corrosion cracking, high strength and good weldability. Those steels are preferably used in industries combining hydrogen and loads. Hydrogen location in addition to hydrogen binding energy with the steel's defects are of great importance for the analysis of hydrogen embrittlement model in that steel. It is known from previously published works that the susceptibility to hydrogen embrittlement will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's state and position in the steel. In this work, we examine the local hydrogen concentration, trapping and distribution by two modern and advanced techniques: thermal desorption spectrometry (TDS) and we support it by time of flight-secondary ion mass spectrometer (ToF-SIMS). In this paper, we support and give for the first time new insights and better understanding to the hydrogen embrittlement mechanism in SAF 2205. The trapping energies levels were calculated using TDS and Lee and Lee's model. This model revealed reversible in addition to irreversible trapping sites. Also the trapping controlling mechanism was found to be a combination of detrapping controlled mechanism and diffusion controlled mechanism. The use of ToF-SIMS for local imaging the distribution of hydrogen species supports the discussion of the different hydrogen traps in this type of steel. The hydrogen embrittlemet phenomenon in SAF 2205 will be discussed in details in that paper. KW - Hydrogen trapping KW - Duplex stainless steel KW - Thermal desorption spectrometry (TDS) KW - ToF-SIMS PY - 2017 U6 - https://doi.org/10.1016/j.jallcom.2016.11.184 SN - 0925-8388 SN - 1873-4669 VL - 695 SP - 2689 EP - 2695 PB - Elsevier B.V. AN - OPUS4-38856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 U6 - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silverstein, R. A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels N2 - The interaction of hydrogen with various tungsten-inert-gas-welded austenitic stainless steels’ (AUSS) microstructure is studied by means of desorption/absorption analysis and microstructure observations. One of the limitations of welding is created by the presence of hydrogen in the weld, which can shorten the steel’s service life. The local hydrogen concentration, trapping, and its distribution along the welded samples were studied by thermal desorption spectrometry and were supported by X-ray diffraction (XRD) and electronic microstructural observations. Hydrogen content demonstrated a dependence on the welding zone. It was found that hydrogen distribution, and accepted microstructure during welding, played a significant role in the trapping mechanism of 316L AUSS. XRD analysis revealed residual stresses which were caused due to the presence of hydrogen in c-phase. It was shown that the austenite microconstituents inside 316L can have a crucial effect in preventing hydrogen-assisted cracking phenomenon. The effects of AUSS microstructure on hydrogen absorption and desorption behavior are discussed in detail. KW - Thermal-desorption spectroscopy KW - Ferritic steels KW - Strain rates KW - Duplex KW - Embrittlement KW - Diffusion KW - Titanium KW - Alloys KW - Behavior PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2349-6 SN - 1573-4803 SN - 0022-2461 VL - 53 IS - 14 SP - 10457 EP - 10468 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-46833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -