TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, C. A1 - Eisentraut, Paul A1 - Altmann, Korinna A1 - Elert, Anna Maria A1 - Bannick, C. G. A1 - Ricking, M. A1 - Obermaier, N. A1 - Barthel, A.-K. A1 - Schmitt, T. A1 - Jekel, M. A1 - Braun, U. T1 - Development of a routine screening method for the microplastic mass content in a wastewater treatment plant effluent N2 - An investigation of microplastic (MP) occurrence in a municipal wastewater treatment plant (WWTP) effluent with tertiary treatment was carried out. Representative sample volumes of 1 m3 were taken by applying a fractionated filtration method (500, 100, and 50 µm mesh sizes). The detection of MP mass fractions by thermal extraction desorption–gas chromatography/mass spectrometry (TED-GC/MS) was achieved without the previously required additional sample pretreatment for the first time. Different types of quantification methods for the evaluation of TED-GC/MS data were tested, and their accuracy and feasibility have been proven for real samples. Polyethylene, polystyrene, and polypropylene were identified in effluent samples. The polymer mass content varied significantly between 5 and 50 mg m−3. A correlation between the MP load and the quantity of suspended matter in the WWTP effluents, particle size distribution, particle type, and operation day (i.e., weekday, season, and capacity) was not found. It can be concluded that a meaningful assessment of WWTPs requires a comprehensive sampling campaign with varying operation conditions. KW - Microplastic KW - Waste water treatment KW - Thermoanalytics PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550862 SN - 2673-4486 VL - 3 SP - 1 EP - 10 PB - Frontiers Media CY - Lausanne AN - OPUS4-55086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -