TY - CONF A1 - Elert, Anna Maria T1 - Application of NanoIR interdisciplinary research at BAM N2 - Atomic force microscopy based Infrared spectroscopy (AFM-IR) is a quickly evolving technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. This is possible since the detection method is based on a very sharp AFM tip which starts to oscillate when the sample starts to thermally expand (the changed is caused by the absorption of IR wavelength) where the thermal expansion is related to the IR absorption. This presentation briefly described the application of that new technique from polymer characterization and utilization of AFM-IR in material research, up to life science applications. T2 - AFM-IR Workshop: Nanoscale IR Spectroscopy CY - Dresden, Germany DA - 29.11.2017 KW - NanoIR KW - AFM KW - Composite KW - Polyurethane PY - 2017 AN - OPUS4-43221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elert, Anna Maria A1 - Becker, Roland A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Falkenhagen, Jana A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Challenges in Microplastics identification is one Detection method enough? N2 - Long-term accumulation and fragmentation of plastic waste in ecosystems is currently a global subject of scientific and social concern. The combination of mechanical abrasion with degradation by UV radiation, and oxidation leads to the formation of small plastic particles (size less than 5 mm) which are not only distributed in oceanic and costal water, but also in sediments and terrestrial compartment. Since the contamination of the environment with plastic particles became emerging issue, an increasing trend towards investigating and controlling the MP pollution of the environment can be observed worldwide. Nonetheless, the reliable methodology that would facilitate and automate the monitoring of MP is still missing. Aiming at the selection of practical and standardized methods we present here a critical comparison of two vibrational spectroscopies, Raman and Fourier transform infrared (FTIR) spectroscopy, and two extraction methods: thermal desorption gas chromatography mass spectrometry (TED-GC-MS) and liquid extraction with subsequent size exclusion chromatography (SEC) using a soil (reference material) with known contents of PE, PP, PS and PET. The results are compared in terms of the measurements time, technique handling, detection limits and requirement for sample preparation. The comparison of Raman and FTIR spectra provides broader understanding of the polymeric origin of the analysed particles. Furthermore, at the level of individual particle, Raman imaging yields additional information on the stage of the polymer degradation and contamination on the surface. On the other hand, by applying the thermal and liquid extraction methods the fast and quantitative analysis of MP content is possible. Therefore, to establish reliable, standardized detection methods a combination of several parallel approaches should be considered. T2 - ICCE 2017 CY - Oslo, Norway DA - 18.06.2017 KW - Microplastics KW - TED-GC-MS KW - Vibrational Spectroscopy PY - 2017 AN - OPUS4-40942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -