TY - CONF A1 - Staude, Andreas A1 - Ehrig, Karsten A1 - Illerhaus, Bernhard A1 - Spreemann, M. T1 - Making use of phase-contrast in dimensional muCT-measurements of weakly absorbing objects N2 - The effects of refraction (phase-contrast) are normally considered as disturbances in high-resolution μCT-measurements. We show that in the case of small objects with low absorption a single-distance phase-retrieval algorithm not only reduces the edge enhancement, but also raises the signal-to-noise ratio sufficiently to allow dimensional measurements. This is exemplified at an optical element for optical fibre connectors. T2 - Conference on industrial computed tomography (ICT) 2014 CY - Wels, Austria DA - 25.02.2014 PY - 2014 SN - 978-3-8440-2557-6 SN - 1610-4773 SP - 405 EP - 410 PB - Shaker Verlag GmbH AN - OPUS4-30325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ehrig, Karsten A1 - L'Hostis, V. A1 - Muzeau, B. A1 - Paetsch, O. T1 - Examination of damage processes in concrete with CT N2 - In order to extend the lifetime of buildings and constructions at the macro scale it is necessary to understand the damage processes of building materials at the micro scale. In particular, durability of reinforced concrete structures is one of the most important equirements for construction planning and restoration of buildings. Therefore degradation mechanisms were reproduced on laboratory specimens. CT (Computed Tomography) is commonly used for non-destructive microstructural defect analysis for recurring tests on concrete specimens. In this work a few examples of CT applications on cementitious materials (including cement paste, mortar and concrete specimens) will be presented. Firstly, in order to quantify the degradation processes, specimens analysed were damaged by corrosion due to carbonation and due to chloride ingress. Particular focus has been set to the analysis of cracks. An automated crack detection tool, developed by Zuse Institut Berlin (ZIB) and BAM in ZIBAmira, has been applied for quantitative analysis of crack parameters and 3D visualization of cracks. Furthermore the distribution of corrosion products has been evaluated inside the cement matrix and visualized in 3D data sets. Another important factor for the ageing stability of concrete is the interfacial transition zone (ITZ). The ITZ consists of a layer of cement paste (20 to 40 μm) over every aggregate where porosity is generally increased in comparison with the bulk. This zone could be a preferential zone for transfer of aggressive species. To visualize the ITZ, a small sample of mortar with a diameter of 10mm has been prepared and scanned using the industrial μCT setup at BAM with a spatial resolution of 5μm voxel size. In addition the extracted surface of aggregates could be used for load simulations. We finally show how CT examination of drilled samples taken from building materials in conjunction with laboratory experiments is helpful for further evaluations of damage processes in concrete. T2 - Conference on industrial computed tomography (ICT) 2014 CY - Wels, Austria DA - 25.02.2014 KW - X-ray computed tomography KW - Concrete KW - Corrosion KW - Crack detection KW - 3D visualization PY - 2014 SN - 978-3-8440-2557-6 SN - 1610-4773 SP - 111 EP - 122 PB - Shaker Verlag GmbH AN - OPUS4-30332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Staude, Andreas A1 - Ehrig, Karsten ED - Bernard, D. ED - Buffière, J.-Y. ED - Pollock, T. ED - Poulsen, H.F. ED - Rollett, A. ED - Uchic, M. T1 - Analyzing microstructure and damage in construction materials with 3D micro CT N2 - This poster presentation gives an overview of the great potential of X-ray micro computed tomography (CT) to cast light on the evolution of the microstructure in construction materials. Prevention of damage is of major economic and social importance in the development of suitable construction materials such as concrete and asphalt. Therefore a non-destructive testing method such as CT is an appropriate tool for visualization of the inner structure. Its combination with other test methods allows understanding the damage processes such as crack propagation or corrosion. We show examples of internal structure analyses on a wide range of materials: Automatic 3D crack detection and the visualization of corrosion products inside of steel reinforced concrete, pore and shape analysis of lightweight aggregates and the visualization of deformation of high-pressure loaded aerated concrete specimens, distribution of aggregates inside concrete, and determination of the surface of porous asphalt core samples. Segmented structures serve, e.g., as input data for simulation of transport phenomena or virtual load tests. T2 - 2nd International congress on 3D materials science 2014 CY - Annecy, France DA - 29.06.2014 KW - X-ray computed tomography KW - Concrete KW - Asphalt KW - Corrosion KW - Crack detection KW - 3D visualization PY - 2014 SP - 23 EP - 28 PB - Wiley AN - OPUS4-31069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titschack, J. A1 - Baum, D. A1 - Matsuyama, K. A1 - Boos, K. A1 - Färber, C. A1 - Kahl, W.-A. A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Soriano, C. A1 - Stock, S.R. T1 - Ambient occlusion – A powerful algorithm to segment shell and skeletal intrapores in computed tomography data N2 - During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AOderived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources. KW - Micro-computed tomography KW - Pore segmentation KW - Skeletal classification KW - Image analysis PY - 2018 DO - https://doi.org/10.1016/j.cageo.2018.03.007 SN - 0098-3004 SN - 1873-7803 VL - 115 SP - 75 EP - 87 PB - Elsevier Ltd. AN - OPUS4-44511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Céspedes-Gonzales, G. T1 - Validation of flash thermography using computed tomography for characterizing inhomogeneities and defects in CFRP structures N2 - Active thermography is an efficient non-destructive testing method for investigating the internal structure of larger carbon fiber reinforced plastic (CFRP) components as well as smaller CFRP components in mass customization. The method can be applied contactless and automated. This study contains systematic investigations of CFRP structures with typical defects and inhomogeneities occurring during production by means of flash thermography in reflection and transmission configuration and by computed tomography (CT). The latter one was used as a reference method, since also very small defects at larger depth can be visualized with high spatial resolution. The CFRP structures consist of plates which contain metallic and non-metallic inclusions, contaminations with glue or wax rests, areas with inhomogeneous re-injection of dry parts, fiber misalignments, and fiber damages. Further on, two specimens have been glued together with different artificial inhomogeneities of the four glue beads. The results of the applied methods are compared and the advantages and disadvantages of each configuration are discussed based on the detectability of the inhomogeneities. It is shown that although CT has led to best contrasts and spatial resolutions in displaying the inhomogeneities and inclusions, flash thermography is very well suited to detect most of these structures. Considering that flash thermography can be applied on-site and has a high potential for automation and for a fast and efficient testing, it can be highly recommended for quality assurance during and after production of CFRP structures. KW - A. Laminates KW - B. Defects KW - D. Radiography KW - D. Thermal analysis PY - 2014 DO - https://doi.org/10.1016/j.compositesb.2014.04.027 SN - 1359-8368 VL - 64 SP - 175 EP - 186 PB - Elsevier CY - Oxford [u.a.] AN - OPUS4-30771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoch, H. A1 - Wessel, A. A1 - Asche, M. A1 - Baum, D. A1 - Beckmann, F. A1 - Bräunig, P. A1 - Ehrig, Karsten A1 - Mühlethaler, R. A1 - Riesemeier, Heinrich A1 - Staude, Andreas A1 - Stelbrink, B. A1 - Wachmann, E. A1 - Weintraub, P. A1 - Wipfler, B. A1 - Wolff, C. A1 - Zilch, M. T1 - Non-sexual abdominal appendages in adult insects challenge a 300 million year old bauplan N2 - Despite their enormous diversity, the bauplan of adult winged insects (pterygotes) is remarkably conservative since the Lower Devonian: a five-segmented head, a three-segmented thorax with three pairs of walking legs and an eleven-segmented abdomen without any non-sexual appendages 1 and 2. The only known exceptions are the abdominal appendages of adult male sepsid flies on the fourth segment; however, these are also used as copulatory organs and are supposedly maintained through sexual selection [3]. Here, we report a rod-like paired appendage from the third and fourth abdominal segments in adults of the Southeast-Asian Hemiptera taxon Bennini (Figure 1A,B; Supplemental information). These are fully musculated, innervated, and movable and bear highly organized sensory and secretory units. The appendages, termed LASSO (lateral abdominal sensory and secretory organs), are consistent in topology and structure in all species studied and not sexually dimorphic. The existence of these non-sexual abdominal appendages reveals the potential of the 300 million year old conserved bauplan of insects. KW - CT KW - Bauplan KW - Adult insects KW - Abdominal appendages PY - 2014 DO - https://doi.org/10.1016/j.cub.2013.11.040 SN - 0960-9822 SN - 1879-0445 VL - 24 IS - 1 SP - R16 EP - R17 PB - Cell Press CY - Cambridge, Mass. AN - OPUS4-30034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Staude, Andreas A1 - Ehrig, Karsten A1 - Krebs, Holger T1 - Bestimmung der Porosität und der inneren Oberfläche von Ammoniumnitratprills N2 - Für die Herstellung von ANFO-, Watergel- und Emulsionssprengstoffen haben Ammoniumnitratprills (AN-Prills) als einer der wichtigsten Bestandteile eine sehr hohe technische Bedeutung. Aufgrund ihrer hohen Porosität und inneren Oberfläche absorbieren sie die flüssigen Komponenten des Sprengstoffes an der Prilloberfläche sehr gut. Diese hohe Porosität ist Ergebnis eines aufwändigen Herstellungsverfahrens. In Prillfalltürmen wird heiße, hochkonzentrierte AN-Lösung/Schmelze zur Herstellung der AN-Prills versprüht. PY - 2014 SN - 0941-4584 VL - 36 IS - 1 SP - 4 EP - 6 PB - Deutscher Sprengverband CY - Siegen AN - OPUS4-30528 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Färber, C. A1 - Titschack, J. A1 - Schönberg, Chr. H. L. A1 - Ehrig, Karsten A1 - Boos, K. A1 - Illerhaus, Bernhard A1 - Asgaard, U. A1 - Bromley, R. G. A1 - Freiwald, A. A1 - Wisshak, M. ED - Bahn, M. ED - Fennel, K. ED - Kesselmeier, J. ED - Naqvi, S. W. A. T1 - Long-term macrobioerosion in the Mediterranean Sea assessed by micro-computed tomography N2 - Biological erosion is a key process for the recycling of carbonate and the formation of calcareous sediments in the oceans. Experimental studies showed that bioerosion is subject to distinct temporal variability, but previous long-term studies were restricted to tropical waters. Here, we present results from a 14-year bioerosion experiment that was carried out along the rocky limestone coast of the island of Rhodes, Greece, in the Eastern Mediterranean Sea, in order to monitor the pace at which bioerosion affects carbonate substrate and the sequence of colonisation by bioeroding organisms. Internal macrobioerosion was visualised and quantified by micro-computed tomography and computer-algorithm-based segmentation procedures. Analysis of internal macrobioerosion traces revealed a dominance of bioeroding sponges producing eight types of characteristic Entobia cavity networks, which were matched to five different clionaid sponges by spicule identification in extracted tissue. The morphology of the entobians strongly varied depending on the species of the producing sponge, its ontogenetic stage, available space, and competition by other bioeroders. An early community developed during the first 5 years of exposure with initially very low macrobioerosion rates and was followed by an intermediate stage when sponges formed large and more diverse entobians and bioerosion rates in-creased. After 14 years, 30 % of the block volumes were occupied by boring sponges, yielding maximum bioerosion rates of 900 g m. KW - Bioerosion KW - Computed tomography KW - Carbonate substrate PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-372709 UR - http://www.biogeosciences.net/13/3461/2016/bg-13-3461-2016.pdf DO - https://doi.org/10.5194/bg-13-3461-2016 VL - 13 IS - 11 SP - 3461 EP - 3474 PB - Copernicus Publications CY - Göttingen AN - OPUS4-37270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Ehrig, Karsten A1 - Meinel, Dietmar T1 - Validierung der aktiven Thermografie mittels CT zur Charakterisierung von Inhomogenitäten und Fehlstellen in CFK N2 - Aktive Thermografieverfahren werden immer häufiger zur zerstörungsfreien Prüfung von Faserverbundwerkstoffen eingesetzt, da diese völlig berührungslos arbeiten und sowohl zur Prüfung großflächiger Strukturen als auch von großen Stückzahlen kleinerer Komponenten in der Fertigung eingesetzt werden können. Dieser Beitrag beschäftigt sich mit Untersuchungen an typischen Defekten und Inhomogenitäten, die bereits während der Fertigung von CFK Bauteilen entstehen oder unbeabsichtigt mit eingebaut werden. Systematische Untersuchungen wurden mit Blitzthermografie in Reflexions- und Transmissionskonfiguration und mit Computertomographie (CT) durchgeführt. Die CT wurde dabei als Referenzverfahren genutzt, da dieses Verfahren auch kleinere Defekte mit relativ hoher Ortsauflösung und unabhängig von der Tiefe darstellen kann. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 KW - Aktive Thermografie KW - Computer Tomographie KW - Aluminium Druckguss KW - Poren KW - Validierung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345251 SN - 978-3-940283-68-9 IS - DGZfP BB 152 SP - Mi.3.C.1, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-34525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Hilpert, U. A1 - Härtig, F. A1 - Bartscher, M. A1 - Ehrig, Karsten A1 - Staude, Andreas A1 - Goebbels, Jürgen T1 - Messunsicherheit, Kalibrierung und Normale zur zuverlässigen Rückführung der dimensionell messenden Computertomographie (CT) T2 - 4. VDI-Fachtagung Messunsicherheit - Messunsicherheit praxisgerecht bestimmen CY - Erfurt, Deutschland DA - 0208-11-12 PY - 2008 SN - 978-3-98-12624-1-4 IS - Kap. 31 SP - 1 EP - 14 CY - Düsseldorf AN - OPUS4-18600 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -