TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC₁im]⁺[NTf₂]⁻ and [C₄C₁im]⁺[I]⁻). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. KW - Ionic liquids KW - NEXAFS KW - DFT spectrum simulations PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-367223 SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 12 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlert, Christopher A1 - Holzwebe, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Saalfrank, P. T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+ [NTf2]− and [C4C1im]+ [I]−). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Further, a detailed assignment of resonance features to excitation centers leads to a consistent interpretation of the spectra. T2 - 52nd Symposium on Theoretical Chemistry (STC2016) CY - Ruhr Universität Bochum, Germany DA - 26.9.2016 KW - NEXAFS KW - Simulation KW - Ionic liquid PY - 2016 AN - OPUS4-38276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Glamsch, Stephan A1 - Ehlert, Christopher A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon N2 - The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z95 of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. KW - Synchrotron radiation XPS KW - Depth profiling KW - Silanes KW - Monolayer KW - Amines KW - Amides PY - 2016 U6 - https://doi.org/10.1016/j.apsusc.2015.12.052 SN - 0169-4332 SN - 1873-5584 VL - 363 SP - 406 EP - 411 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -