TY - JOUR A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Bernsmeier, D. A1 - Polte, J. A1 - Strasser, P. A1 - Vainio, U. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Micelle-templated oxides and carbonates of zinc, cobalt, and aluminium and a generalized strategy for their synthesis N2 - Catalysis, energy storage, and light harvesting require functional materials with tailored porosity and nanostructure. However, common synthesis methods that employ polymer micelles as structure-directing agents fail for zinc oxide, for cobalt oxide, and for metal carbonates in general. We report the synthesis of the oxides and carbonates of zinc, cobalt, and aluminum with micelle-templated structure. The synthesis relies on poly(ethylene oxide)-block-poly(butadiene)-block-poly(ethylene oxide) triblock copolymers and a new type of precursor formed by chemical complexation of a metal nitrate with citric acid. A general synthesis mechanism is deduced. Mechanistic insights allow for the prediction of optimal processing conditions for different oxides and carbonates based on simple thermogravimetric analysis. Employing this synthesis, films of ZnO and Co3O4 with micelle-controlled mesoporosity become accessible for the first time. It is the only soft-templating method reported so far that also yields mesoporous metal carbonates. The developed synthesis is generic in nature and can be applied to many other metal oxides and carbonates. KW - EISA KW - Pore templating KW - Metal oxide KW - Metal carbonate KW - Zinc oxide KW - Cobalt oxide PY - 2013 U6 - https://doi.org/10.1021/cm400535d SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 14 SP - 2749 EP - 2758 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Enthaler, S. A1 - Krackl, S. A1 - Epping, J.D. A1 - Eckhardt, B. A1 - Weidner, Steffen A1 - Fischer, A. T1 - Iron-based pre-catalyst supported on polyformamidine for C-C bond formation N2 - In the present study the incorporation of iron into an organic polymer, composed of formamidine subunits [R–N=C(H)–NH–R], has been examined. The catalytic ability of the recyclable material was investigated in the iron-catalyzed formation of C–C bonds. After optimization of the reaction conditions, excellent yields and chemoselectivities were feasible. KW - Polyforamidine KW - Synthesis KW - Catalytic ability PY - 2012 U6 - https://doi.org/10.1039/c2py00540a SN - 1759-9954 SN - 1759-9962 VL - 3 IS - 3 SP - 751 EP - 756 AN - OPUS4-25461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Bernsmeier, D. A1 - Strasser, P. A1 - Vainio, U. A1 - Polte, J. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - A general strategy for the synthesis of micelle-templated mesoporous metal carbonates and metal oxides T2 - MSE - Material Science Engineering CY - Darmstadt, Germany DA - 2014-09-23 PY - 2014 AN - OPUS4-32929 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eckhardt, B. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - The synthesis of micelle-templated mesoporous metal carbonates and metal oxides T2 - 13th Young Researchers Conference on Materials Science and Engineering CY - Serbia, Belgrade DA - 2014-12-10 PY - 2014 AN - OPUS4-32771 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Polte, J. A1 - Bernsmeier, D. A1 - Eckhardt, B. A1 - Paul, B. A1 - Bergmann, A. A1 - Strasser, P. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Pd/TiO2 coatings with template-controlled mesopore structure as highly active hydrogenation catalyst N2 - Micro-structured reactors offer excellent mass and heat transport capabilities and can therefore sustain very high reaction rates and space–time-yields also for highly exothermic catalytic reactions. However, such high rates cannot be reached when the reactors are coated or filled with conventional catalysts powders. We present a strategy for the direct synthesis of highly active wall-coated supported catalysts via co-deposition of a pore template (here micelles formed from PEO-b-PPO-b-PEO) and a precursors for the metal oxide (TiCl4) along with a compatible precursor for the active metal (PdCl2). The obtained catalytic coatings possess a template-controlled open pore structure and excellent mechanical stability. Moreover, the active metal is highly dispersed and well-distributed across the coating also at high Pd loadings. The corresponding high activity along with rapid mass transfer enabled by the open pore system results in the best space–time-yields in the gas-phase hydrogenation of butadiene reported so far in literature for a supported catalyst. KW - Titanium oxide films KW - Palladium nanoparticle KW - Wall-coated supported catalysts KW - Template-controlled mesoporous materials KW - Hydrogenation of 1,3-butadiene PY - 2015 U6 - https://doi.org/10.1016/j.apcata.2014.12.044 SN - 0926-860X SN - 1873-3875 VL - 493 SP - 25 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-32465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Bernicke, M. A1 - Eckhardt, B. A1 - Bernsmeier, D. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Lippitz, Andreas T1 - Synthesis and OER activity of NiO coatings with N2 - Catalysts based on nickel oxide are some of the most active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, preparing catalytic coatings with high surface area and good accessibility of the active sites remains challenging. We present a new approach for the synthesis of homogeneous and binder-free nickel oxide coatings comprising a highly accessible ordered mesopore structure. The synthesis is achieved via evaporation induced self assembly utilizing PEOPB-PEO triblock copolymers as pore template and a chemical complex of Ni2+ and citric acid as precursor. Excessive crystallization behaviour of NiO is avoided by thermal conversion of the precursor into an amorphous Ni carbonate intermediate, followed by transition of the carbonate into the metal oxide. We present a comprehensive analysis of the obtained materials in terms of morphology, crystallinity, surface area, composition, and OER activity of differently calcined catalysts. Retaining a low crystallinity and high surface area during the Synthesis proofs to be the most important factor in obtaining a highly active OER catalyst. KW - XPS KW - nanoparticle KW - catalysis PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/slct.201600110/abstract U6 - https://doi.org/10.1002/slct.201600110 VL - 2016 IS - 3/2016 SP - 482 EP - 489 PB - Wiley Online Library CY - Weinheim AN - OPUS4-35725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmack, R. A1 - Eckhardt, B. A1 - Koch, G. A1 - Ortel, Erik A1 - Kraehnert, R. T1 - ZnO coatings with controlled pore size, crystallinity and electrical conductivity N2 - Zinc oxide is a wide bandgap semiconductor with unique optical, electrical and catalytic properties. Many of its practical applications rely on the materials pore structure, crystallinity and electrical conductivity. We report a synthesis method for ZnO films with ordered mesopore structure and tuneable crystallinity and electrical conductivity. The synthesis relies on dip-coating of solutions containing micelles of an amphiphilic block copolymer and complexes of Zn2+ ions with aliphatic ligands. A subsequent calcination at 400 °C removes the template and induces crystallization of the pore walls. The pore structure is controlled by the template polymer, whereas the aliphatic ligands control the crystallinity of the pore walls. Complexes with a higher thermal stability result in ZnO films with a higher content of residual carbon, smaller ZnO crystals and therefore lower electrical conductivity. The paper discusses the ability of different types of ligands to assist in the synthesis of mesoporous ZnO and relates the structure and thermal stability of the precursor complexes to the crystallinity and electrical conductivity of the zinc oxide. KW - conductivity KW - EISA KW - pore templating KW - pore size control KW - ligands KW - zinc oxide PY - 2016 U6 - https://doi.org/10.5755/j01.ms.22.1.8634 SN - 1392–1320 VL - 22 IS - 1 SP - 74 EP - 81 PB - Kaunas University of Technology, Lithuania AN - OPUS4-35550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraehnert, R. A1 - Ortel, Erik A1 - Paul, B. A1 - Eckhardt, B. A1 - Kanis, M. A1 - Liu, R. A1 - Antoniou, A. T1 - Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating N2 - Micro structured reactors are attractive candidates for further process intensification in heterogeneous catalysis. However, they require catalytic coatings with significantly improved space-time yields compared to traditional supported catalysts. We report the facile synthesis of homogeneous nanocrystalline Pt coatings with hierarchical pore structure by electrochemical dealloying of amorphous sputter-deposited platinum silicide layers. Thickness, porosity and surface composition of the catalysts can be controlled by the dealloying procedure. XPS analysis indicates that the catalyst surface is primarily composed of metallic Pt. Catalytic tests in gas-phase hydrogenation of butadiene reveal the typical activity, selectivity and activation energy of nanocrystalline platinum. However, space time yields are about 13 to 200 times higher than values reported for Pt-based catalysts in literature. The highly open metallic pore structure prevents heat and mass transport limitations allowing for very fast reactions and reasonable stability at elevated temperatures. KW - Pt catalysts KW - Pt–Si layers KW - Scanning Electron Microscopy (SEM) KW - Transmission Electron Microscopy (TEM) KW - pore structure KW - electrochemical dealloying PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-351393 SN - 2044-4753 SN - 2044-4761 VL - 5 IS - 1 SP - 206 EP - 216 PB - RSC Publ. CY - Cambridge AN - OPUS4-35139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -