TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin M. A1 - Miloavljevic, A. R. A1 - Guliani, A. A1 - Bald, Ilko T1 - Vacuum-UV induced DNA strand breaks – influence of the radiosensitizers 5-bromouracil and 8-bromoadenine JF - Physical Chemistry Chemical Physics N2 - Radiation therapy is a basic part of cancer treatment. To increase the DNA damage in carcinogenic cells and preserve healthy tissue at the same time, radiosensitizing molecules such as halogenated nucleobase analogs can be incorporated into the DNA during the cell reproduction cycle. In the present study 8.44 eV photon irradiation induced single strand breaks (SSB) in DNA sequences modified with the radiosensitizer 5-bromouracil (5BrU) and 8-bromoadenine (8BrA) are investigated. 5BrU was incorporated in the 13mer oligonucleotide flanked by different nucleobases. It was demonstrated that the highest SSB cross sections were reached, when cytosine and thymine were adjacent to 5BrU, whereas guanine as a neighboring nucleobase decreases the activity of 5BrU indicating that competing reaction mechanisms are active. This was further investigated with respect to the distance of guanine to 5BrU separated by an increasing number of adenine nucleotides. It was observed that the SSB cross sections were decreasing with an increasing number of adenine spacers between guanine and 5BrU until the SSB cross sections almost reached the level of a non-modified DNA sequence, which demonstrates the high sequence dependence of the sensitizing effect of 5BrU. 8BrA was incorporated in a 13mer oligonucleotide as well and the strand breaks were quantified upon 8.44 eV photon irradiation in direct comparison to a non-modified DNA sequence of the same composition. No clear enhancement of the SSB yield of the modified in comparison to the non-modified DNA sequence could be observed. Additionally, secondary electrons with a maximum energy of 3.6 eV were generated when using Si as a substrate giving rise to further DNA damage. A clear enhancement in the SSB yield can be ascertained, but to the same degree for both the non-modified DNA sequence and the DNA sequence modified with 8BrA. KW - Vacuum-UV KW - 5-bromouracil KW - 8-bromoadenine PY - 2019 DO - https://doi.org/10.1039/c8cp06813e SN - 1463-9084 VL - 21 IS - 4 SP - 1972 EP - 1979 PB - RSC AN - OPUS4-47462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Schürmann, Robin M. A1 - Heck, Christian A1 - Meiling, T. A1 - Milosavljevic, A. A1 - Giuliani, A. A1 - Bald, Ilko T1 - Vacuum-UV and low-energy electron induced DNA strand breaks - Influence of the DNA sequence and substrate JF - Chemphyschem : a European journal of chemical physics and physical chemistry N2 - DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7 - 2.3 x 10-16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies < 3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold. KW - Vacuum-UV KW - Low-Energy KW - DNA KW - DNA-Sequence PY - 2019 DO - https://doi.org/10.1002/cphc.201801152 SN - 1439-7641 VL - 20 IS - 6 SP - 823 EP - 830 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -