TY - JOUR A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Wurzler, Nina A1 - Salz, D. A1 - Özcan Sandikcioglu, Özlem A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-Inspired Multivalent Linear Polyglycerol Coatings Outperform Monovalent Polyethylene Glycol Coatings in Antifouling Surface Properties N2 - Biofouling constitutes a major challenge in the application of biosensors and biomedical implants, as well as for (food) packaging and marine equipment. In this work, an antifouling surface coating based on the combination of mussel-inspired dendritic polyglycerol (MI-dPG) and an amine-functionalized block copolymer of linear polyglycerol (lPG−b−OA11, OA = oligo-amine) was developed. The coating was compared to a MI-dPG surface which was postfunctionalized with commercially available amine-terminated Polyethylene glycol (HO−PEG−NH2) of similar molecular weight. In the current work, These coatings were compared in their chemical stability, protein fouling characteristics, and cell fouling characteristics. The lPG−b−OA11-functionalized coating showed high chemical stability in both phosphate buffered saline (PBS) and sodium dodecyl sulfate (SDS) solutions and reduced the adhesion of fibrinogen from human plasma with 99% and the adhesion of human serum albumin with 96%, in comparison to the bare titanium dioxide substrate. Furthermore, the Proliferation of human umbilical vein endothelial cells (HUVECs) was reduced with 85% when the lPG−b−OA11 system was compared to bare titanium dioxide. Additionally, a reduction of 94% was observed when the lPG−b−OA11 system was compared to tissue culture polystyrene. KW - Antifouling surface coatings KW - Human umbilical cell adhesion KW - Linear polyglycerol KW - Polyethylene glycol KW - Mussel-inspired adhesives PY - 2019 U6 - https://doi.org/10.1021/acsabm.9b00786 VL - 2 IS - 12 SP - 5749 EP - 5759 PB - ACS AN - OPUS4-50342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Cuellar-Camach, J.L. A1 - Guday, G. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Osterrieder, K. A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions N2 - As resistance to traditional drugs emerges for treatment of Virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex Virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3–C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic Inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications. KW - Functionalized nanographene KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS KW - Antiviral activity PY - 2019 U6 - https://doi.org/10.1039/c9nr05273a SN - 2040-3364 VL - 11 IS - 34 SP - 15804 EP - 15809 PB - The Royal Society of Chemistry AN - OPUS4-48807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, M. A1 - Schlaich, C. A1 - Kulka, M. W. A1 - Donskyi, Ievgen A1 - Schwerdtle, T. A1 - Unger, Wolfgang A1 - Haag, R. T1 - Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion N2 - Over the last few decades, there has been a tremendous increase in research on antibacterial surface coatings as an alternative strategy against bacterial infections. Although there are several examples of effective strategies to prevent bacterial adhesion, the effect of the wetting properties on the coating was rarely considered as a crucial factor. Here we report an in-depth study on the effect of extreme wettability on the antibacterial efficiency of a silver nanoparticles (AgNPs)-based coating. By Controlling surface polymerization of mussel-inspired dendritic polyglycerol (MI-dPG) and post-functionalization, surfaces with wetting properties ranging from superhydrophilic to superhydrophobic were fabricated. Subsequently, AgNPs were embedded into the coatings by applying in situ reduction using the free catechols-moieties present in the MI-dPG coating. The resulting polymer coatings exhibited excellent antibacterial ability against planktonic Escherichia coli (E. coli) DH5a and Staphylococcus aureus (S. aureus) SH1000. The antibacterial efficiency of the coatings was analyzed by using inductively coupled plasma mass spectrometry (ICP-MS) and bacterial viability tests. Furthermore, the Antifouling properties of the coatings in relation to the antibacterial properties were evaluated. KW - Antibacterial surface coatings KW - Silver nanoparticles KW - XPS KW - Mussel-inspired dendritic polyglycerol (MI-dPG) PY - 2019 U6 - https://doi.org/10.1039/c9tb00534j SN - 2050-750X SN - 2050-7518 VL - 7 IS - 21 SP - 3438 EP - 3445 PB - The Royal Society of Chemistry AN - OPUS4-48520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 U6 - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guday, G. A1 - Donskyi, Ievgen A1 - Gholami, M. F. A1 - Algara-Siller, G. A1 - Witte, F. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Paulus, B. A1 - Rabe, J. A1 - Adeli, M. A1 - Haag, R. T1 - Scalable Production of Nanographene and Doping via Nondestructive Covalent Functionalization N2 - A new method for top‐down, one‐pot, gram‐scale production of high quality nanographene by incubating graphite in a dilute sodium hypochlorite solution at only 40 °C is reported here. The produced sheets have only 4 at% oxygen content, comparable with nanographene grown by chemical vapor deposition. The nanographene sheets are covalently functionalized using a nondestructive nitrene [2+1] cycloaddition reaction that preserves their π‐conjugated system. Statistical analyses of Raman spectroscopy and X‐ray photoelectron spectroscopy indicate a low number of sp3 carbon atoms on the order of 2% before and 4% after covalent functionalization. The nanographene sheets are significantly more conductive than conventionally prepared nanographene oxide, and conductivity further increases after covalent functionalization. The observed doping effects and theoretical studies suggest sp2 hybridization for the carbon atoms involved in the [2+1] cycloaddition reaction leading to preservation of the π‐conjugated system and enhancing conductivity via n‐type doping through the bridging N‐atom. These methods are easily scalable, which opens the door to a mild and efficient process to produce high quality nanographenes and covalently functionalize them while retaining or improving their physicochemical properties. KW - Graphene KW - XPS KW - NEXAFS PY - 2019 U6 - https://doi.org/10.1002/smll.201805430 VL - 15 IS - 12 SP - 1805430 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -