TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Wetzel, B. A1 - Zhang, G. T1 - Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6 vol.% silica nanoparticles N2 - A model based on movable cellular automata (MCA) is described and applied for simulating the stress–strain and sliding behavior of a nanocomposite consisting of an epoxy matrix and 6 vol.% of homogeneously distributed silica nanoparticles. Tensile tests were used for verification of the model. It was realized that a slight modification of epoxy properties due to the addition of silica nanoparticles had to be taken into account in order to obtain good correlation between experimental and modeling results. On the other hand, sliding simulations revealed no susceptibility of results to slight modifications of matrix properties, but a significant impact of nanoparticles on the interface structure and smoothness of sliding mechanism. Furthermore, assuming both possibilities, bond breaking and rebinding of automata pairs, can explain different friction levels of polymer materials. KW - Nanocomposite KW - Stress–strain behavior KW - Movable cellular automata KW - Sliding simulation KW - Mechanically mixed layer KW - Coefficient of friction PY - 2015 U6 - https://doi.org/10.1016/j.commatsci.2015.08.029 SN - 0927-0256 VL - 110 SP - 204 EP - 214 PB - Elsevier CY - Amsterdam AN - OPUS4-34013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical simulation of typical contact situations of brake friction materials N2 - In the paper, a model typical for contact situations of automotive brakes is established based on the method of movable cellular automata. The processes taking place at local contacts in an automotive brake system are analysed. Based on microscopic and micro-analytical observations, the following contact situations were simulated: (i) a couple of ferritic steel against pearlitic steel, both covered by an oxide layer mixed with graphite nanoparticles and (ii) the same situation but without oxide layers. The results of calculated mean coefficients of friction of the oxide-on-oxide contact correspond well to expected values for a real braking system, whereas steel-on-steel contact are twice as high. This allows one to make some conclusions; for example, oxide formation will take place more quickly than friction layer elimination, and finally this is responsible for the stabilisation of the coefficient of friction. KW - Friction KW - Primary contact KW - Automotive brake system KW - Numerical simulation KW - Method of movable cellular automata PY - 2008 U6 - https://doi.org/10.1016/j.triboint.2007.04.001 SN - 0301-679X VL - 41 IS - 1 SP - 1 EP - 8 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-15841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Nano-scale modeling of pad-disc interface. The influence of copper as a pad ingredient. T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Friction layer KW - Copper particles KW - MCA-modelling PY - 2010 SP - 1 EP - 6(?) AN - OPUS4-22656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical Simulation of Mechanically Mixed Layer Formation at Local Contacts of an Automotive Brake System KW - Nanotribology KW - Automotive Brakes KW - Dynamic Modelling KW - Friction Mechanisms KW - Mechanically Mixed Layer KW - Movable Cellular Automata PY - 2008 U6 - https://doi.org/10.1080/10.40.2000802380314 SN - 1040-2004 SN - 1547-397X VL - 51 SP - 1 EP - 7 PB - Taylor & Francis CY - Philadelphia, Pa. AN - OPUS4-18696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dmitriev, A.I. A1 - Österle, Werner T1 - Numerical modeling of dry friction sliding in pad-disc interface at the nanoscale T2 - 37th Summer school-conference - Advanced problems in mechanics (APM 2009) CY - St. Petersburg, Russia DA - 2009-06-30 PY - 2009 SN - 978-5-91339-029-5 SP - 174 EP - 182 AN - OPUS4-19750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner T1 - Sliding simulations with variable amounts of copper and graphite mixed with magnetite N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). Our previous studies show that copper as a constituent of the tribofilm formed during braking provides smooth sliding by forming a granular layer of mechanically mixed materials from the friction layers. In the present study the concentration of copper particles in a Fe3O4-matrix was varied systematically in the range 5.5-28 vol. % and compared to mixtures with the same amount of graphite nanoparticles. The sliding simulations were performed while assuming material properties at 500°C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - EuroBrake 2016 CY - Milano, Italy DA - 13.06.2016 KW - Movable cellular automata KW - Copper KW - Sliding simulation KW - Third body KW - Tribofilm PY - 2016 UR - www.eurobrake.net VL - EB2016-SVM-054 SP - 1 EP - 7 PB - FISITA AN - OPUS4-37938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Smolin, A.Y. A1 - Psakhie, S.G. A1 - Österle, Werner A1 - Kloß, Heinz A1 - Popov, V.L. T1 - Computer modeling of local tribological contacts by the example of the automotive brake friction pair N2 - In the paper the method of discrete modeling (movable cellular automata method) and combined discrete-continuous description of the simulated medium are used to analyze processes occurring in the local contact of the automotive brake system. The characteristic size of the considered region is 1.5 ?m. The following contact situation is simulated: steel fiber coated by an iron oxide film as the brake pad and pearlitic steel also coated by an iron oxide layer as the disc. On the assumption of oxide layer wearing we simulate the iron oxide - iron oxide, iron oxide - metal and metal - metal contacts. The calculation results for the friction coefficient for various contact situations give quite adequate values. For example, for the oxide - oxide system the calculated coefficient is approximately equal to 0.4, while for the metal - metal contact the obtained value varies from 0.7 to 0.9. Analysis of a set of the obtained results allows concluding that oxide is formed more rapidly than the sliding layer, which in turn makes the friction coefficient value stabilized. PY - 2008 U6 - https://doi.org/10.1016/j.physme.2008.03.008 SN - 1029-9599 VL - 11 IS - 1-2 SP - 73 EP - 84 PB - Inst. of Strength Physics and Materials Science SB RAS CY - Tomsk AN - OPUS4-18698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Nikonov, A.Y. A1 - Österle, Werner T1 - Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite N2 - The method of movable cellular automata (MCA) and method of molecular dynamics (MD) were applied to simulate the friction and sliding behavior of model-tribofilms formed from a nanocomposite consisting of an epoxy matrix, 10 vol % micron-sized carbon fibers and 5 vol. % silica nanoparticles. Whereas MCA considered the tribofilm as an agglomerate of silica nanoparticles released from the composite and mixed with graphite particles, MD simulated the sliding behavior of an amorphous silica layer supported by stiff crystalline substrates on both sides. The MCA model provided reasonable quantitative results which corroborate experimental findings at moderate stressing conditions. The very low coefficient of friction observed experimentally under severe stressing conditions was not explained by this model. This could be attributed to the lack of mechanical data at the high temperature expected under these conditions. Although based on a simpler assumption of the tribofilm composition, MD-modelling could be easily applied to the expected high flash temperature and was able to predict friction reduction and smooth sliding under these conditions. T2 - 21st European Conference on Fracture ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Silica nanoparticle KW - Hybrid composite KW - Tribofilm KW - Molecular dynamics KW - Movable cellular automata PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-379402 VL - 2 SP - 2347 EP - 2354 PB - Elsevier Ltd. AN - OPUS4-37940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Kloß, Heinz A1 - Österle, Werner T1 - Final outcome of a fundamental research project on tribofilms formed during automotive braking, Part 2: Numerical simulation N2 - In part 1 it was shown that tribofilms usually are 100 nm thick and exhibit a multiphase nanocrystalline structure. The objective of our modelling efforts was to obtain a better understanding of the sliding behaviour and associated friction properties and to study the impact of internal and external parameters on these properties. The method of movable cellular automata (MCA) was used. The third bodies were considered as aggregates of linked nanoparticles which may decompose and form a layer of granulär material, the so-called mechanically mixed layer (MML), if certain fracture criteria are fulfilled. The basic model structure which consists of Fe3Ü4 nanoparticles with 13 % graphite inclusions was used. In order to assess the robustness of the model the following parameter studies were performed. The pressure ränge at an asperity contact was varied between 15 and 50 MPa. The mechanical properties of the oxide were varied between brittle and ductile behaviour corresponding to room temperature and high temperature behaviour. The mechanical properties of the soft ingredient were varied + 50 % of the properties of graphite. The influence T2 - EuroBrake 2014 CY - Lille, France DA - 13.05.2014 KW - Tribofilm KW - Third body KW - Dry friction KW - Modelling KW - Movable cellular automata PY - 2014 SN - 978-0-9572076-4-6 SP - 1 EP - 9 PB - FISITA CY - London AN - OPUS4-35040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner A1 - Kloß, Heinz A1 - Orts-Gil, Guillermo T1 - A study of third body behaviour under dry sliding conditions. Comparison of nanoscale modelling with experiment N2 - Automotive brake pads consist of many components but it is still not entirely clear which role each of the elements of this complex composition plays to provide the specified regimes of sliding. This is due to the mutual interaction of multiscale mechanisms, realized during the friction. In this work we have attempted to partly answer this question using computer simulations. Since the simulation allows us to consider various combinations of the structure of the system being simulated ceteris paribus, it becomes possible to understand the role of each constituent sequentially. The main attention is paid to the structure and composition of the thin film that forms on the surface of both bodies as a result of compaction of the wear product, its chemical composition and oxidation. This layer, also named a third body or friction film, differs in composition and microstructure from the two first bodies. We considered a single contact for the steady state sliding when the structure and composition of friction films already are formed. As a modelling tool we used the method of movable cellular automata, which has well proven itself in solving of such tasks. We investigated the influence of modification of the structure and composition of the third body on the features of system behaviour at friction. To assess the adequacy of the numerical model, experimental studies with an artificial third body were also carried out. The Simulation results are in good agreement with experimental data. KW - Third body KW - Dry sliding KW - Mechanically mixed layer KW - Computer simulation PY - 2012 U6 - https://doi.org/10.3176/eng.2012.3.12 SN - 1736-6038 SN - 1736-7522 VL - 18 IS - 3 SP - 270 EP - 278 AN - OPUS4-38545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -