TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Orts Gil, Guillermo A1 - Schneider, Thomas A1 - Ren, H. A1 - Sun, X. T1 - Verification of nanometre-scale modelling of tribofilm sliding behaviour JF - Tribology International N2 - A model based on movable cellular automata has been applied to study the sliding behaviour of tribofilms formed during automotive braking. Since it is not possible yet to determine the composition of real tribofilms quantitatively, final verification of modelling results is needed. This was done by preparing artificial third bodies with compositions and nanostructures matching the ones assumed for modelling. Pin-on-disc tests were performed while applying the artificial third bodies to the contact. The results revealed that not only the structure of the third body but also the amount of the applied normal pressure determines the COF obtained by modelling and that much better correlation between experimental and modelling results was obtained while assuming high normal pressures at asperity contacts. KW - Automotive braking KW - Third body KW - Modelling KW - Sliding simulation PY - 2013 DO - https://doi.org/10.1016/j.triboint.2013.02.018 SN - 0301-679X VL - 62 SP - 155 EP - 162 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-27946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical simulation of typical contact situations of brake friction materials JF - Tribology International N2 - In the paper, a model typical for contact situations of automotive brakes is established based on the method of movable cellular automata. The processes taking place at local contacts in an automotive brake system are analysed. Based on microscopic and micro-analytical observations, the following contact situations were simulated: (i) a couple of ferritic steel against pearlitic steel, both covered by an oxide layer mixed with graphite nanoparticles and (ii) the same situation but without oxide layers. The results of calculated mean coefficients of friction of the oxide-on-oxide contact correspond well to expected values for a real braking system, whereas steel-on-steel contact are twice as high. This allows one to make some conclusions; for example, oxide formation will take place more quickly than friction layer elimination, and finally this is responsible for the stabilisation of the coefficient of friction. KW - Friction KW - Primary contact KW - Automotive brake system KW - Numerical simulation KW - Method of movable cellular automata PY - 2008 DO - https://doi.org/10.1016/j.triboint.2007.04.001 SN - 0301-679X VL - 41 IS - 1 SP - 1 EP - 8 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-15841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Kloß, Heinz A1 - Urban, Ingrid A1 - Dmitriev, A.I. T1 - Towards a better understanding of brake friction materials JF - Wear N2 - This work focuses on surface changes induced by repeated brake applications and tries to provide explanations, how such material modifications might affect friction and wear properties of automotive disc brakes. Surface films were investigated locally by transmission electron microscopy (TEM) after having prepared thin cross-sections with a focused ion beam instrument (FIB). Since the observed friction layers revealed a nanocrystalline structure, modelling with the method of movable cellular automata (MCA) was performed by assuming an array of linked nanometer-sized particles. In spite of complicated material combinations at the pad surface, two very characteristic features were always observed at both the pad and disc surface, namely a steel constituent—either ferritic (pad) or pearlitic (disc), partly covered with patches of nanocrystalline iron oxide, on a zone of severe plastic deformation with fragmented grain structure. When using an automata size of 10 nm, reasonable values for the mean coefficient of friction (COF) were obtained, namely 0.35 and 0.85 for oxide-on-oxide and metal-on-metal contacts, respectively. Immediately after brake application mass-mixing and bond-breaking was observed within a narrow zone at both surfaces. KW - Brake pad KW - Brake disc KW - Composite material KW - Friction layer KW - Third body KW - MCA-modelling PY - 2007 DO - https://doi.org/10.1016/j.wear.2006.12.020 SN - 0043-1648 VL - 263 IS - 7-12 SP - 1189 EP - 1201 PB - Elsevier CY - Amsterdam AN - OPUS4-15735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Does ultra-mild wear play any role for dry friction applications, such as automotive braking? JF - Faraday discussions N2 - Nanostructured third body films and/or storage of wear debris at the surfaces of the first bodies are deemed as prerequisites of sliding under ultra-mild wear conditions. Since such features have been observed experimentally on brake pads and discs, attempts were undertaken to study their sliding behaviour by modelling on the nanoscopic scale with an approach based on Movable Cellular Automata (MCA). The model rendered the possibility to study the influence of different nanostructures systematically and to assess the impact of different brake pad ingredients on the sliding behaviour, velocity accommodation and friction force stabilization at a sliding contact. Besides providing a review on previously published modelling results, some additional new graphs enabling better visualization of dynamic processes are presented. Although ultra-mild wear conditions were considered to be essential for achieving the desired tribological properties, transitions to mesoscopic and macroscopic wear mechanisms were studied as well. The final conclusion is that ultra-mild wear and corresponding smooth sliding behaviour play an important role during automotive braking, even though temporarily and locally events of severe wear may cause friction instabilities, surface damage and release of coarse wear particles. KW - Dry friction KW - Ultra-mild wear KW - Third body KW - MCA-model KW - Simulation PY - 2012 DO - https://doi.org/10.1039/c2fd00117a SN - 1359-6640 SN - 1364-5498 VL - 156 IS - 0 SP - 159 EP - 171 PB - Soc. CY - Cambridge [u.a.] AN - OPUS4-26822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata JF - Tribology International N2 - The tribological properties of nanostructured surface films formed during dry sliding, for example during automotive braking, were determined by modelling using the method of movable cellular automata. Starting from a basic model structure, consisting of magnetite with 13% graphite inclusions, the impact of additional soft and hard particles of different size and volume fraction was studied systematically. It was revealed that agglomerates of soft particles decomposed and finally mixed with the oxide in the same way as single nanoparticles. On the other hand, agglomerates of hard particles mixed with the other components without decomposing. Whereas increasing the amount of soft components in the third body lowered the coefficient of friction, the opposite occurred with the hard particles. The boundary conditions for obtaining smooth sliding conditions with minor fluctuations between friction forces at successive time steps could be defined. In addition to features of the nanostructure, the applied normal pressure impacted modelling results. Within the parameter range of smooth sliding behaviour, increasing pressure induced thicker granular interface layers, which lead to a slight decrease of the coefficient of friction. Changing the amount of soft or hard particles did not change this pressure dependency but only the friction level. KW - MCA-modelling KW - Third body KW - Nanoparticles KW - Dry friction PY - 2012 DO - https://doi.org/10.1016/j.triboint.2011.11.018 SN - 0301-679X VL - 48 SP - 128 EP - 136 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-25469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khimich, M. A. A1 - Prosolov, K. A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Monforte, X. A1 - Teuschl, A. H. A1 - Slezak, P. A1 - Ibragimov, E. A. A1 - Saprykin, A. A. A1 - Kovalevskaya, Z. G. A1 - Dmitriev, A. I. A1 - Bruno, Giovanni A1 - Sharkeev, Y. P. T1 - Advances in Laser Additive Manufacturing of Ti-Nb Alloys: From Nanostructured Powders to Bulk Objects JF - Nanomaterials N2 - The additive manufacturing of low elastic modulus alloys that have a certain level of porosity for biomedical needs is a growing area of research. Here, we show the results of manufacturing of porous and dense samples by a laser powder bed fusion (LPBF) of Ti-Nb alloy, using two distinctive fusion strategies. The nanostructured Ti-Nb alloy powders were produced by mechanical alloying and have a nanostructured state with nanosized grains up to 90 nm. The manufactured porous samples have pronounced open porosity and advanced roughness, contrary to dense samples with a relatively smooth surface profile. The structure of both types of samples after LPBF is formed by uniaxial grains having micro- and nanosized features. The inner structure of the porous samples is comprised of an open interconnected system of pores. The volume fraction of isolated porosity is 2 vol. % and the total porosity is 20 vol. %. Cell viability was assessed in vitro for 3 and 7 days using the MG63 cell line. With longer culture periods, cells showed an increased cell density over the entire surface of a porous Ti-Nb sample. Both types of samples are not cytotoxic and could be used for further in vivo studies. KW - Additive manufacturing KW - Biomaterials KW - Ti-Nb alloy KW - Nanostructured powder KW - Laser methods KW - Powder methods KW - Laser powder bed fusion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525344 DO - https://doi.org/10.3390/nano11051159 VL - 11 IS - 5 SP - 1159 PB - MDPI AN - OPUS4-52534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Gradt, Thomas A1 - Orts Gil, Guillermo A1 - Schneider, Thomas A1 - Dmitriev, A.I. T1 - Tribological screening tests for the selection of raw materials for automotive brake pad formulations JF - Tribology International N2 - A modified pin-on-disc test was applied to determine tribological properties of typical brake pad constituents. Ball-milling of these ingredients together with iron oxide and graphite provided model materials displaying the main features of real third bodies. Solid lubricants like graphite affected the friction and wear behaviour of Fe3O4 powders considerably whereas further addition of hard nanoparticles induced only minor effects. This was corroborated by comparison with modelling results. MoS2 played a dual role. Depending on special conditions, this ingredient either reduced or increased friction. The latter could be explained, after nanoscopic characterization, by oxidation and destruction of the wear-protecting tribofilm. KW - Brake pad formulation KW - Raw materials KW - Third body KW - Pin-on-disc test PY - 2014 DO - https://doi.org/10.1016/j.triboint.2014.01.017 SN - 0301-679X VL - 73 SP - 148 EP - 155 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-30221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical Simulation of Mechanically Mixed Layer Formation at Local Contacts of an Automotive Brake System JF - Tribology transactions KW - Nanotribology KW - Automotive Brakes KW - Dynamic Modelling KW - Friction Mechanisms KW - Mechanically Mixed Layer KW - Movable Cellular Automata PY - 2008 DO - https://doi.org/10.1080/10.40.2000802380314 SN - 1040-2004 SN - 1547-397X VL - 51 SP - 1 EP - 7 PB - Taylor & Francis CY - Philadelphia, Pa. AN - OPUS4-18696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Nikonov, A.Y. A1 - Österle, Werner T1 - Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite T2 - Procedia Structural Integrity N2 - The method of movable cellular automata (MCA) and method of molecular dynamics (MD) were applied to simulate the friction and sliding behavior of model-tribofilms formed from a nanocomposite consisting of an epoxy matrix, 10 vol % micron-sized carbon fibers and 5 vol. % silica nanoparticles. Whereas MCA considered the tribofilm as an agglomerate of silica nanoparticles released from the composite and mixed with graphite particles, MD simulated the sliding behavior of an amorphous silica layer supported by stiff crystalline substrates on both sides. The MCA model provided reasonable quantitative results which corroborate experimental findings at moderate stressing conditions. The very low coefficient of friction observed experimentally under severe stressing conditions was not explained by this model. This could be attributed to the lack of mechanical data at the high temperature expected under these conditions. Although based on a simpler assumption of the tribofilm composition, MD-modelling could be easily applied to the expected high flash temperature and was able to predict friction reduction and smooth sliding under these conditions. T2 - 21st European Conference on Fracture ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Silica nanoparticle KW - Hybrid composite KW - Tribofilm KW - Molecular dynamics KW - Movable cellular automata PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379402 DO - https://doi.org/10.1016/j.prostr.2016.06.294 VL - 2 SP - 2347 EP - 2354 PB - Elsevier Ltd. AN - OPUS4-37940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Giovannozzi, A. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Rossi, A. A1 - Wetzel, B. A1 - Zhang, G. A1 - Dmitriev, A.I. T1 - Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality JF - Tribology International N2 - We applied a combination of Raman spectroscopy (RS) and cross-sectional transmission electron microscopy (X-TEM) to identify silicone oil residues and tribofilms at steel disc surfaces after tribological testing. Neither chemical cleaning nor mechanical removal of a 50 µm thick surface layer produced a surface without any silicone residue. Nevertheless, long-term tribological properties are not affected due to silicone degradation which has been proved by Raman spectroscopy. Excellent anti-wear and anti-friction properties of a nanocomposite at severe stressing conditions correlated with the formation of a silica-based tribofilm containing amorphous and graphite-like carbon nanoparticles. Since reliable carbon quantification by analytical TEM is difficult, RS is a useful complementary method for carbon identification at wear scars. KW - Raman spectroscopy KW - Cross-sectional TEM KW - Silicone oil residue KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.04.046 SN - 0301-679X VL - 90 SP - 481 EP - 490 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Sliding simulation of automotive brake primary contact with variable amounts of copper and graphite nanoparticles T2 - ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016 N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). In the study the concentration of copper particles in a Fe3O4-matrix was varied. The sliding simulations were performed while assuming material properties at 500 degrees C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Polymer matrix composite KW - Silica nanoparticles KW - Friction KW - Wear PY - 2016 DO - https://doi.org/10.1063/1.4966337 VL - 1783 SP - 020044-1 EP - 020044-4 AN - OPUS4-38933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nikonov, A. Y.. A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Molecular dynamics study of slip mechanisms of nickel with amorphous-like Ni-P coating T2 - ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016 N2 - In the paper by using molecular dynamics method we investigate behavior of nickel-phosphorus compound in amorphous-like state under conditions of shear loading at the constant velocity. Samples with an amorphous layer of pure nickel and nickel-phosphorus compound were considered. The analysis showed that forces of shear resistance in the sample with an amorphous layer containing phosphorus in about 3 times less than the sample with a layer of pure nickel. Thus, it was shown that nickel-phosphorous coating in amorphous-like state may exhibit low friction properties, and, therefore, serve as the solid lubricant material. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Local structural transformations KW - Lattice PY - 2016 DO - https://doi.org/10.1063/1.4966457 VL - 1783 SP - 020164-1 EP - 020164-4 AN - OPUS4-38932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Wollenschläger, Nicole A1 - Gradt, Thomas A1 - Wolter, Christian A1 - Reinstädt, Philipp A1 - Zeigmeister, U. A1 - Dmitriev, A. I. A1 - Nikonov, A. Y. T1 - Potential of different nickel coatings for optimizing the sliding behavior of electrical connectors JF - Tribology International N2 - The potential of several nickel coatings was investigated by reciprocating sliding tests against copper thus simulating the plug-socket system of an electrical connector. KW - Electrical connectors KW - Electro-plated nickel coatings KW - Electroless Ni-P KW - Cold-welding KW - Tribooxidation PY - 2018 DO - https://doi.org/10.1016/j.triboint.2018.01.006 SN - 0301-679X SN - 1879-2464 VL - 120 SP - 491 EP - 501 PB - Elsevier Ltd. AN - OPUS4-44468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Häusler, Ines A1 - Wetzel, B. A1 - Zhang, G. A1 - Österle, Werner T1 - Modeling of the stress-strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles JF - Materials and Design N2 - The method of movable cellular automata (MCA) was applied to simulate the stress-strain behavior of a nano composite consisting of an epoxy matrix and 6 vol. % silica nano particles. The size of the elements used for modelling was fixed at 10 nm, corresponding approximately to the diameter of the filler particles. Since not only the stress-strain response of the two constituents but also debonding of neighboring particles and granular flow was taken into account, plastic deformation as well as crack initiation and propagation could be simulated with the model. Modelling results were compared with tensile test results of both, pure epoxy as well as the epoxy-6 vol. % SiO2 composite. Since assuming bulk properties of the two constituents did not yield satisfactory results, slight modifications of the nanoparticle response functions and nanostructures were tested numerically. Finally, it was observed that only the assumption of slightly increased strength properties of the epoxy yielded good correlation between experimental and modelling results. This was attributed to an increased cross linking of the epoxy caused by the presence of silica nano particles. KW - Nanocomposite KW - Polymer matrix composite KW - Stress-strain behavior KW - Modeling KW - Computational mechanics PY - 2016 DO - https://doi.org/http://dx.doi.org/10.1016/j.matdes.2015.10.038 SN - 0264-1275 VL - 89 SP - 950 EP - 956 PB - Elsevier AN - OPUS4-35596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A. I. A1 - Wetzel, B. A1 - Zhang, G. A1 - Häusler, Ines A1 - Jim, B.C. T1 - The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite JF - Materials and design N2 - Excellent tribological properties of an advanced polymer matrix composite were obtained by a combination of micro- and nano-sized fillers. Surface features and the nanostructure of tribofilms were characterized by advanced microscopic techniques, and correlated with the macroscopic behavior in terms of wear rate and friction evolution. A model based on movable cellular automata was applied for obtaining a better understanding of the sliding behavior of the nanostructured tribofilms. The failure of the conventional composite without silica nanoparticles could be attributed to severe oxidational wear after degradation of an initially formed polymer transfer film. The hybrid composite preserves its antiwear and antifriction properties because flash temperatures at micron-sized carbon fibers, lead to polymer degradation and subsequent release of nanoparticles. It has been shown that the released particles are mixed with other wear products and form stable films at the disc surface thus preventing further severe oxidational wear. Furthermore, the released wear product also is embedding carbon fibers at the composite surface thus preventing fiber fragmentation and subsequent third body abrasion. With nanoscale modelling we were able to show that low friction and wear can be expected if the nanostructured silica films contain at least 10 vol.% of a soft ingredient. KW - Carbon fibers KW - Silica nanoparticles KW - Hybrid composite KW - Tribological properties KW - Tribofilm KW - Sliding simulation PY - 2016 DO - https://doi.org/10.1016/j.matdes.2015.12.175 SN - 0264-1275 VL - 93 SP - 474 EP - 484 PB - Elsevier AN - OPUS4-35598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Wetzel, B. A1 - Zhang, G. T1 - Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6 vol.% silica nanoparticles JF - Computational materials science N2 - A model based on movable cellular automata (MCA) is described and applied for simulating the stress–strain and sliding behavior of a nanocomposite consisting of an epoxy matrix and 6 vol.% of homogeneously distributed silica nanoparticles. Tensile tests were used for verification of the model. It was realized that a slight modification of epoxy properties due to the addition of silica nanoparticles had to be taken into account in order to obtain good correlation between experimental and modeling results. On the other hand, sliding simulations revealed no susceptibility of results to slight modifications of matrix properties, but a significant impact of nanoparticles on the interface structure and smoothness of sliding mechanism. Furthermore, assuming both possibilities, bond breaking and rebinding of automata pairs, can explain different friction levels of polymer materials. KW - Nanocomposite KW - Stress–strain behavior KW - Movable cellular automata KW - Sliding simulation KW - Mechanically mixed layer KW - Coefficient of friction PY - 2015 DO - https://doi.org/10.1016/j.commatsci.2015.08.029 SN - 0927-0256 VL - 110 SP - 204 EP - 214 PB - Elsevier CY - Amsterdam AN - OPUS4-34013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -