TY - JOUR A1 - Österle, Werner A1 - Nikonov, A. Y. A1 - Dmitriev, A. I. ED - Krzanowski, J. T1 - MD sliding simulations of amorphous tribofilms consisting of either SiO2 or carbon N2 - The sliding behaviors of two simplified tribofilms with amorphous structure consisting either of SiO₂ molecules or C atoms were simulated by molecular dynamics modeling. The objective was to identify mechanisms explaining the experimentally observed lubricating properties of the two amorphous films. The impacts of layer thickness, normal pressure, temperature and different substrate materials were studied systematically, while the sliding velocity was kept constant at 30 m/s. While the layer thickness was not critical, all the other parameters showed special effects under certain conditions. Normal pressure impeded void formation and could even eliminate voids if applied at high temperature. Stick-slip sliding was changed to smooth sliding at high temperature due to void healing. Considering the carbon film, high friction forces and shearing of the entire film was observed with diamond substrates, whereas interface sliding at low friction forces and an amorphous layer of iron mixed with carbon was observed if the supporting substrates consisted of α-Fe. Both films show a decrease of friction forces and smooth sliding behavior at elevated temperature, corresponding well to the tribological behavior of and advanced nanocomposite sliding against a steel disc under severe stressing conditions when high flash temperatures can be expected. KW - dry friction KW - amorphous silica film KW - amorphous carbon film KW - sliding simulation KW - molecular dynamics PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-379367 VL - 4 IS - 24 PB - MDPI CY - Basel, Switzerland AN - OPUS4-37936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner T1 - Sliding simulations with variable amounts of copper and graphite mixed with magnetite N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). Our previous studies show that copper as a constituent of the tribofilm formed during braking provides smooth sliding by forming a granular layer of mechanically mixed materials from the friction layers. In the present study the concentration of copper particles in a Fe3O4-matrix was varied systematically in the range 5.5-28 vol. % and compared to mixtures with the same amount of graphite nanoparticles. The sliding simulations were performed while assuming material properties at 500°C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - EuroBrake 2016 CY - Milano, Italy DA - 13.06.2016 KW - Movable cellular automata KW - Copper KW - Sliding simulation KW - Third body KW - Tribofilm PY - 2016 UR - www.eurobrake.net VL - EB2016-SVM-054 SP - 1 EP - 7 PB - FISITA AN - OPUS4-37938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Nikonov, A.Y. A1 - Österle, Werner T1 - Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite N2 - The method of movable cellular automata (MCA) and method of molecular dynamics (MD) were applied to simulate the friction and sliding behavior of model-tribofilms formed from a nanocomposite consisting of an epoxy matrix, 10 vol % micron-sized carbon fibers and 5 vol. % silica nanoparticles. Whereas MCA considered the tribofilm as an agglomerate of silica nanoparticles released from the composite and mixed with graphite particles, MD simulated the sliding behavior of an amorphous silica layer supported by stiff crystalline substrates on both sides. The MCA model provided reasonable quantitative results which corroborate experimental findings at moderate stressing conditions. The very low coefficient of friction observed experimentally under severe stressing conditions was not explained by this model. This could be attributed to the lack of mechanical data at the high temperature expected under these conditions. Although based on a simpler assumption of the tribofilm composition, MD-modelling could be easily applied to the expected high flash temperature and was able to predict friction reduction and smooth sliding under these conditions. T2 - 21st European Conference on Fracture ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Silica nanoparticle KW - Hybrid composite KW - Tribofilm KW - Molecular dynamics KW - Movable cellular automata PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-379402 VL - 2 SP - 2347 EP - 2354 PB - Elsevier Ltd. AN - OPUS4-37940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Sliding simulation of automotive brake primary contact with variable amounts of copper and graphite nanoparticles N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). In the study the concentration of copper particles in a Fe3O4-matrix was varied. The sliding simulations were performed while assuming material properties at 500 degrees C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Polymer matrix composite KW - Silica nanoparticles KW - Friction KW - Wear PY - 2016 U6 - https://doi.org/10.1063/1.4966337 VL - 1783 SP - 020044-1 EP - 020044-4 AN - OPUS4-38933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nikonov, A. Y.. A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Molecular dynamics study of slip mechanisms of nickel with amorphous-like Ni-P coating N2 - In the paper by using molecular dynamics method we investigate behavior of nickel-phosphorus compound in amorphous-like state under conditions of shear loading at the constant velocity. Samples with an amorphous layer of pure nickel and nickel-phosphorus compound were considered. The analysis showed that forces of shear resistance in the sample with an amorphous layer containing phosphorus in about 3 times less than the sample with a layer of pure nickel. Thus, it was shown that nickel-phosphorous coating in amorphous-like state may exhibit low friction properties, and, therefore, serve as the solid lubricant material. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Local structural transformations KW - Lattice PY - 2016 U6 - https://doi.org/10.1063/1.4966457 VL - 1783 SP - 020164-1 EP - 020164-4 AN - OPUS4-38932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Häusler, Ines A1 - Wetzel, B. A1 - Zhang, G. A1 - Österle, Werner T1 - Modeling of the stress-strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles N2 - The method of movable cellular automata (MCA) was applied to simulate the stress-strain behavior of a nano composite consisting of an epoxy matrix and 6 vol. % silica nano particles. The size of the elements used for modelling was fixed at 10 nm, corresponding approximately to the diameter of the filler particles. Since not only the stress-strain response of the two constituents but also debonding of neighboring particles and granular flow was taken into account, plastic deformation as well as crack initiation and propagation could be simulated with the model. Modelling results were compared with tensile test results of both, pure epoxy as well as the epoxy-6 vol. % SiO2 composite. Since assuming bulk properties of the two constituents did not yield satisfactory results, slight modifications of the nanoparticle response functions and nanostructures were tested numerically. Finally, it was observed that only the assumption of slightly increased strength properties of the epoxy yielded good correlation between experimental and modelling results. This was attributed to an increased cross linking of the epoxy caused by the presence of silica nano particles. KW - Nanocomposite KW - Polymer matrix composite KW - Stress-strain behavior KW - Modeling KW - Computational mechanics PY - 2016 U6 - https://doi.org/http://dx.doi.org/10.1016/j.matdes.2015.10.038 SN - 0264-1275 VL - 89 SP - 950 EP - 956 PB - Elsevier AN - OPUS4-35596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner ED - Österle, Werner ED - Zhang, G. T1 - The role of solid lubricants for brake friction materials N2 - This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol.% of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and a minimum of wear. KW - Solid lubricant KW - Friction KW - Automotive braking KW - Tribofilm KW - Sliding simulation KW - MCA-modeling PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355973 UR - www.mdpi.com/journal/lubricants SN - 2075-4442 VL - 4 IS - 1 SP - 5 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A. I. A1 - Wetzel, B. A1 - Zhang, G. A1 - Häusler, Ines A1 - Jim, B.C. T1 - The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite N2 - Excellent tribological properties of an advanced polymer matrix composite were obtained by a combination of micro- and nano-sized fillers. Surface features and the nanostructure of tribofilms were characterized by advanced microscopic techniques, and correlated with the macroscopic behavior in terms of wear rate and friction evolution. A model based on movable cellular automata was applied for obtaining a better understanding of the sliding behavior of the nanostructured tribofilms. The failure of the conventional composite without silica nanoparticles could be attributed to severe oxidational wear after degradation of an initially formed polymer transfer film. The hybrid composite preserves its antiwear and antifriction properties because flash temperatures at micron-sized carbon fibers, lead to polymer degradation and subsequent release of nanoparticles. It has been shown that the released particles are mixed with other wear products and form stable films at the disc surface thus preventing further severe oxidational wear. Furthermore, the released wear product also is embedding carbon fibers at the composite surface thus preventing fiber fragmentation and subsequent third body abrasion. With nanoscale modelling we were able to show that low friction and wear can be expected if the nanostructured silica films contain at least 10 vol.% of a soft ingredient. KW - Carbon fibers KW - Silica nanoparticles KW - Hybrid composite KW - Tribological properties KW - Tribofilm KW - Sliding simulation PY - 2016 U6 - https://doi.org/10.1016/j.matdes.2015.12.175 SN - 0264-1275 VL - 93 SP - 474 EP - 484 PB - Elsevier AN - OPUS4-35598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -