TY - JOUR A1 - Österle, Werner A1 - Nikonov, A. Y. A1 - Dmitriev, A. I. ED - Krzanowski, J. T1 - MD sliding simulations of amorphous tribofilms consisting of either SiO2 or carbon JF - Lubricants N2 - The sliding behaviors of two simplified tribofilms with amorphous structure consisting either of SiO₂ molecules or C atoms were simulated by molecular dynamics modeling. The objective was to identify mechanisms explaining the experimentally observed lubricating properties of the two amorphous films. The impacts of layer thickness, normal pressure, temperature and different substrate materials were studied systematically, while the sliding velocity was kept constant at 30 m/s. While the layer thickness was not critical, all the other parameters showed special effects under certain conditions. Normal pressure impeded void formation and could even eliminate voids if applied at high temperature. Stick-slip sliding was changed to smooth sliding at high temperature due to void healing. Considering the carbon film, high friction forces and shearing of the entire film was observed with diamond substrates, whereas interface sliding at low friction forces and an amorphous layer of iron mixed with carbon was observed if the supporting substrates consisted of α-Fe. Both films show a decrease of friction forces and smooth sliding behavior at elevated temperature, corresponding well to the tribological behavior of and advanced nanocomposite sliding against a steel disc under severe stressing conditions when high flash temperatures can be expected. KW - dry friction KW - amorphous silica film KW - amorphous carbon film KW - sliding simulation KW - molecular dynamics PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379367 DO - https://doi.org/10.3390/lubricants4030024 VL - 4 IS - 24 PB - MDPI CY - Basel, Switzerland AN - OPUS4-37936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner T1 - Sliding simulations with variable amounts of copper and graphite mixed with magnetite T2 - Proceedings EuroBrake 2016 N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). Our previous studies show that copper as a constituent of the tribofilm formed during braking provides smooth sliding by forming a granular layer of mechanically mixed materials from the friction layers. In the present study the concentration of copper particles in a Fe3O4-matrix was varied systematically in the range 5.5-28 vol. % and compared to mixtures with the same amount of graphite nanoparticles. The sliding simulations were performed while assuming material properties at 500°C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - EuroBrake 2016 CY - Milano, Italy DA - 13.06.2016 KW - Movable cellular automata KW - Copper KW - Sliding simulation KW - Third body KW - Tribofilm PY - 2016 UR - www.eurobrake.net VL - EB2016-SVM-054 SP - 1 EP - 7 PB - FISITA AN - OPUS4-37938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner ED - Österle, Werner ED - Zhang, G. T1 - The role of solid lubricants for brake friction materials JF - Lubricants special issue "tribofilms and solid lubrication" N2 - This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol.% of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and a minimum of wear. KW - Solid lubricant KW - Friction KW - Automotive braking KW - Tribofilm KW - Sliding simulation KW - MCA-modeling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355973 UR - www.mdpi.com/journal/lubricants DO - https://doi.org/10.3390/lubricants4010005 SN - 2075-4442 VL - 4 IS - 1 SP - 5 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -