TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds N2 - Independent from the interpass temperature residual stresses in longitudinal direction were lower than in transverse direction. This applies for the surface as well as for the bulk of the welds. Residual stresses in the bulk were in general lower compared to stresses found on the surface. Compressive residual stresses as a result of the martensite formation were formed in the bulk weld metal, only. Independent from the LTT filler used high interpass temperatures were beneficial to reduce the stresses mainly in longitudinal direction. Lower interpass temperatures tend to narrow the tensile zone in the weld metal but they also prevent the formation of compressive residual stresses. T2 - ICRS10 CY - Sydney, Australia DA - 03.07.2016 KW - Phase transformation KW - LTT KW - Welding KW - Heat control KW - Residual stress PY - 2016 AN - OPUS4-37312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - Effect of interpass temperature on residual stresses in LTT welded joints N2 - Independent from the interpasstemperature residual stresses in longitudinal direction were lower than in transverse direction. This applies for the surface as well as for the bulk of the welds. -Residual stresses in the bulk were in general lower compared to stresses found on the surface. •Compressive residual stresses as a result of the martensite formation were formed in the bulk weld metal, only. •Independent from the LTT filler used high interpasstemperatures were beneficial to reduce the stresses mainly in longitudinal direction. •Lower interpasstemperatures tend to narrow the tensile zone in the weld metal but they also prevent the formation of compressive residual stresses. T2 - IIW2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation KW - Interpass temperature KW - LTT KW - Residual stress KW - Welding PY - 2016 AN - OPUS4-37313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. ED - Olden, T.-M. ED - Muransky, O. Muransky ED - Edwards, L. T1 - Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds N2 - The current paper presents residual stress analyses of large scale LTT (Low Transformation Temperature) welds. LTT filler materials are specially designed for residual stress engineering by means of an adjusted martensite phase transformation. Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. In large scale welds the residual stress state is influenced by the heat control (e.g. interpass temperature) during welding. Therefore, welding residual stresses are studied here putting the focus on the influence of welding process parameters while joining heavy steel sections with a thickness of 25 mm. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results show that control of the interpass temperature is vital for the residual stresses present in the joints. This accounts for the top surface but is most pronounced for the bulk of the welds. While high interpass temperatures are appropriate to induce compressive residual stresses in the weld metal, low interpass temperatures favor unwanted tensile residual stresses instead. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-389628 SN - 978-1-94529117-3 SN - 978-1-94529116-6 SN - 2474-395X VL - 2 SP - 223 EP - 228 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Vollert, F. A1 - Kromm, Arne A1 - Gibmeier, J. A1 - Hannemann, Andreas A1 - Fischer, Tobias A1 - Kannengießer, Thomas T1 - In situ analysis of the strain evolution during welding using low transformation temperature filler materials N2 - Compared to conventional welding consumables using low transformation temperature (LTT) filler materials is an innovative method to mitigate tensile residual stresses due to delayed martensite transformation of the weld. For the effective usage of LTT filler materials, a deeper understanding of the complex processes that lead to the final residual stress state during multipass welding is necessary. Transformation kinetics and the strain evolution of multi-pass welds during welding were investigated in situ at the beamline HEMS@PETRAIII, Germany. Compared to conventional welds, the total strain was reduced and compression strain was achieved when using LTT filler materials. For an optimal use of the LTT effect in the root of multi-pass welds, the alloying concept must be adapted taking care of dilution. KW - Low transformation temperature filler materials KW - Synchrotron diffraction KW - Phase transformation KW - Multi-pass welding KW - ADXRD PY - 2018 U6 - https://doi.org/10.1080/13621718.2018.1525150 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 3 SP - 243 EP - 255 PB - Taylor & Francis AN - OPUS4-46039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Wimpory, Robert A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Schröpfer, Dirk T1 - Residual stresses of LTT welds in large-scale components N2 - Residual stresses of welds become more and more important influencing cold cracking as well as the fatigue life of welded components. Low transformation temperature (LTT) filler materials offer the opportunity to alter the residual stresses already during the welding process by means of ad- justed martensite phase transformation temperature (MS). In the current paper, welding residual stresses are studied putting the focus on MS while joining heavy steel sections with a thickness of 20 and 25 mm, respectively. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results com- pare the residual stresses present in a conventional weld and LTT welds when multi-pass welding of large-scale compo- nents was applied. Repeated phase transformation in the case of the LTT weld is more vital for the residual stresses present in the real-life-like joints. This accounts for the top surface in longitudinal direction but is most pronounced for the bulk of the welds. Detrimental tensile residual stresses are mainly re- duced in the bulk in comparison to a conventional filler wire even in multi-pass welds of thick steel sections. T2 - IIW AA 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2017 U6 - https://doi.org/10.1007/s40194-017-0502-5 SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 6 SP - 1089 EP - 1097 PB - Springer CY - Heidelberg AN - OPUS4-41169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -